INSTITUTIONEN FOR DATA.-
OCH SYSTEMVETENSKAP
SU/KTH

D82 & XML
LABORATION

v. 1.1

IS4

Modeller och sprak for objekt- och
relationsdatabaser

HOSTTERMINEN 2000

http://L.238.dsv.su.se/courses/1S4/

hos dimitraha

2

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

Table of contents

I LT oo [Tod o] o USSPV 3
N (0] 0 1=T o T= Lo [OOSR PP PP PR 3
1.2 THE ENVIFONIMENT ..ottt sttt ettt et e b e st e e s e sbeereebesbe e e e sbeaneeseesbeeneenaeas 3

2 XML & DB2...... ettt aae e nnaes 3
728 Y| SRR 3

2. 1.1 XML EXPIANALION ...ttt bbbkt b ettt sb ettt b et eb ettt ebenn et e b 4
2.1.2 DTD EXPIANATION.cviiitiitiieteeie ettt b bbb et b e bbbt e et b e et eb e b e ene e 5
2.2 XIMIL N DB2 ...ttt bttt b ettt bttt et ne st ene e 5
2.2.1 XIML COIBCLION ...ttt sttt b ettt et b et b et sb et e st et ebe e ebeebeseerenbe e 5
2.2.2 XIMIL COTUMIN ...ttt ettt b e et b et b e et b et et e b e ne e b e et et e st e e ebeabeneerenbe e 6

S DAANASE. ...ttt e e ae s 6

A EXBICISES ..ttt sttt sttt ettt e bbbt bt £t bR R b b kb bRt R Rt Rt e bbb b bt e ene s 7
O] T o 0}V =T o =Y G o - ST 7
4.2 IMIOTE 10 0.tttk bbbtk b bbbttt b bbbt e e ene s 27

5 Completed Lab reqUITEMENTScviiiieieiee et 27

B INTEINET RESOUICES. ...ttt ettt et ettt s b et e e s be e e reesnneenneesnneeneen 27

T EPIIOQUE ...ttt bbbt 27

Figure 1 Database MOGEL ..o 6

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

1 Introduction

This compendium contains the following:

e Anintroduction to XML

e An introduction to DB2’s facilities for handling XML data
e Exercises on using DB2 for managing XML data

1.1 Homepage

Information about this compendium can be found here:
http://L238.dsv.su.se/courses/1S4

The following can be found at this address:
e Feedback form
Use this form to send comments/questions about the compendium to the author.

e FAQ
Here there is a list of corrections and explanations.
e Links

Internet resources that can be helpful when working with the compendium.

e Files

The newest version of the compendium and all the files needed to complete the exercises in
the compendium.

e Presentation booking

Every group has to present its work. Here you can book time for the presentation.

1.2 The environment

¢ |BM DB2 Universal Database version 6, with XML extender
The following facilities of DB2 will be used:

= Command Window

= Command Center

= Information Center

More information on DB2 and its facilities can be found in the “Introduktion till DB2 v. 6”
compendium.

2 XML & DB2

This chapter introduces XML and DB2’s facilities for working with XML. This is not a
complete reference of either XML or DB2’s XML extender. The following sections only
present the aspects of XML and DB2 that are needed to complete the exercises that follow.

2.1 XML

XML (eXtensible Markup Language) is a language with many uses. One of them is to
transport data between different systems.

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

XML consists of two languages, one language for the actual XML documents and one
language for specifying how the XML documents® should be structured, called DTD
(Document Type Definition). Not all XML documents are associated to DTDs. Here is an
example of an XML document and its DTD:

XML Document (saved in afile called “book.xml”) DTD file “book.dtd”)
<?xml version="1.0"?> <?xml encoding="US-ASCII"?>)
<IDOCTYPE book SYSTEM "c:\dxx\samples\dtd.book.dtd"> <!ELEMENT book (author*,chapter* price)>
<book> <IELEMENT author (#PCDATA)>

i q_nan _n M <IELEMENT chapter (section*, footnote*)>

<chapter id="1" date="07/01/1997"> . <IATTLIST chapter id (L|2|3) #REQUIRED
<section>This is a section in Chapter One.</section> date CDATA #IMPLIED>
</chapter> <IELEMENT price (#PCDATA)>
<chapter id="2" date="01/02/1997"> <IATTLIST price date CDATA #IMPLIED
<section>This is a section in Chapter Two.</section> time CDATA #IMPLIED
<footnote>A footnote in Chapter Two is here.</footnote> timestamp CDATA #MPLIED>
<Ichapter> <IELEMENT section (#PCDATA)>
. . .]
<price date="12/22/1998" time="11.12.13" timestamp="1998-12-22-11.12.13"> - ELEMENT footnote (#PCDATA)>
38.281
</price>
</book>

@® Both languages are case sensitive!

2.1.1 XML Explanation
Elements:

In the previous example chapter is an element. Everything from the <chapter> to the
</chapter> constitutes an element chapter.

Every XML document must have a root element, an element that has its start tag in the
beginning of the XML document and its end tag at the end of the XML document. This
element may appear only once in the XML document.

Attributes:

The element chapter has an attribute id and an attribute date. All attributes of an element
appear within the starting tag of the element. Attributes have a value that is within double
quotation marks ().

Structure:

<element attributel="value” attribute2="value2”>

element content

</element>

The element content can be empty, text or other elements.

XML declaration & DOCTYPE element

The first two lines of any XML document are always the XML declaration & the DOCTYPE
element:

! The term XML document refers to a file with the extension .xml.

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

XML declaration:

<?xml version="1.0" standalone="no"?>

In the XML declaration we define the XML version and whether there is a DTD file with
rules for the XML structure or not

DOCTYPE element:

<IDOCTYPE Book SYSTEM "c:\ dtd\book.dtd">

The DOCTYPE points out the root element of the XML document and the SYSTEM points
out the DTD file for the XML document.

2.1.2 DTD Explanation
The DTD file contains rules to be followed when constructing an XML document.

It defines the elements that can appear in the XML document:
<IELEMENT element-name>

It defines the elements that can appear within an element:
<IELEMENT element-name (element2-name)>

or the type of the element content:

<IELEMENT element-name (#PCDATA)>

It also defines the attributes that an element can have, with the appropriate rules (the type of
the attribute, whether it has to be there or not, etc.) :
<IATTLIST element-name

attributel-name CDATA #IMPLIED

attribute2-name CDATA #IMPLIED>

For more help on how to construct an XML document visit one of the following tutorial sites
(tutorials for both XML and DTD):

e http://L238.dsv.su.se/tutorial
e http://pdbeam.uwaterloo.ca/~rlander/ XML Tutorial/xml tutorial.html

2.2 XML in DB2

DB?2 provides two ways for working with XML documents and XML data?:
e XML collection
e XML column

2.2.1 XML collection

When XML data is stored in a relational database, then this database is called an XML
collection. DB2 XML extender provides functions for decomposing XML documents into

2 With the term XML data we refer to the contents of XML documents, even when the data has been
transformed. Data that is going to become the content of an XML document can also be referred to as
XML data

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

relational data to be stored in the XML collection and functions for composing XML
documents from XML data stored in the XML collection.

Since XML documents are based on hierarchical models and relational databases are based on
relational models, it is important to have a mapping between the two models. This mapping
can then be used for transformations in both directions. The mapping is defined in DAD
(Document Access Definition) files. A DAD file is an XML document that has the extension
.dad and follows the rules defined in the file dad.dtd®. The DAD file is then used when
enabling the XML collection. At that time DB2 verifies that the tables referred in the DAD
file exist, otherwise they are created.

In chapter 4 there is a more detailed description of how to practically do all this.

2.2.2 XML column

XML column is a different approach than XML collection. XML column is an XML enabled
database that contains intact XML documents. Those XML documents are stored in a certain
table that has a column of one of these three types: XMLCLOB, XMLVARCHAR, XMLFile.
That column has to be enabled and associated with a DAD file. In that DAD file there can be
reference to a DTD file for validating the incoming XML documents and rules for creating
side tables* and storing XML data in them. The DTD file must have been registered in the
DTD_REF table that is created when a database is being enabled for XML.

There are more details about this in chapter 4.

3 Database

For the exercises that follow we will use a database about riding. The database consists of five
tables. The tables are connected with foreign keys as shown in Figure 1.

RNAME
WEIGHT
MEMBERCLUB
ErAIL

DISTAMCE
RACETIME

OWNERCLLB
HNANE
WEIGHT
COLOR

SEX
BIRTHYEAR

Figure 1 Database model

Scripts for creating and populating the database can be found here:
e \WDB-SRV-1\StudKursInfo\lS4 Ht 2000\DB2-XML Laboration\Scripts, or
e hitp:\\L238.dsv.su.se\courses\is4

® The file dad.dtd can be found in the following directory:

c:\dxx\dtd on all the machines that have the DB2 XML extender installed.

* A side table is a table that contains data from the XML document. Those side tables are used to improve
performance when searching through the XML documents. Usually, only some of the XML data is placed
in the side tables — the data that is used most frequently when searching.

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

4 EXxercises

This chapter is divided into two sections. In the first section we go through an exercise step by
step from the beginning to the end. In the second section a similar exercise is described and
has to be completed based on the knowledge acquired from the first section.

4.1 Step-by-step exercise

In this exercise we will do the following:

e Create a database

e Enable the database for XML (as an XML collection) and compose XML documents from
the data in the XML collection

e Extract XML documents into XML files

e Store XML documents in an XML column

e Run queries against the XML column

4.1.1 Create a database

The database can easily be created and populated by using the scripts (see chapter 3). To run
the scripts follow these steps:

e Open the command center (Start — Programs — DB2 for Windows NT — Command
Center)!

e Go to the Script tab and activate the script radio button!

B Command Center [O] %]
Script Edit Help

Script Resultsl

 Interactivef & Script

[Untitied3 N\
I

[N

-
4 F

e Copy and then paste the contents of the first script file (riding.tables.script) into the
command center!

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap 1S4 ht2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser
B riding.tables.script - Notepad
- CEmmE e
DROP_DATABASE riding|
&
CONNECT TO riding B
CREATE TABLE club (chame UARCHAR(30) NOT NULL, ad CREATE DATABASE riding .
CONNECT TO riding
CREATE TABLE club (cname YVARCHAR(30) NOT NULL. address VARCI
CREATE TABLE horse (hname VARCHAR(20) NOT NULL, weight SMAL
CREATE TABLE contestants (raceid UARCHAR(10) NOT CREATE TABLE rider (rname YVARCHAR(30) NOT NULL, weight SMALL
CREATE TRIGGER statustrigger NO CASCADE BEFORE I CREATE TABLE race (raceid VARCHAR(10) NOT NULL, track SMALLIN
CREATE TABLE contestants (raceid VARCHAR(10) NOT NULL, horsenz
ODRGERGEEEETTONSHATN CREATE TRIGGER statustrigger NO CASCADE BEFORE INSERT ON cc
DISCONNECT riding
FORCE APPLICATIONS ALL —
O — o

e Execute the script by pressing the execute button Eg
When the execution of the script is finished, your database has been created. For populating
the database use the second script file (riding.insert.all.script).

4.1.2 Enable the database for XML (as an XML collection) and compose XML
documents

When the database has been created, it is just an ordinary relational database. If the database
IS going to be used as an XML collection then it has to be enabled for XML. That is done by
using the following:
e Start the Command Window (Start — Programs — DB2 for Windows NT — Command
Window)
e Execute this command in the Command Window:
Dxxadm enable_db riding

s DB2 CLP [_[O]
C:\SOLLIB\BIN>Dxxadm enable_db riding B

DXXABB2I Connecting to database riding.
DXXABO5I Enabling database riding. Please wait.
DXXABOEI The database riding was enabled successfully.

C:\SQLLIB\BIN>_

-

4| | H oz

When that is done there should be a few more tables in the database. Those tables are used by
the XML extender. For example the table DTD_REF contains information about DTD files.

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

The next step is to enable the XML collection. That is not a necessary step. To enable the
XML collection we need to have a DAD file. The DAD file is specified when enabling an
XML collection. The DAD file can contain information on how to compose XML documents
from the XML collection and how to decompose XML documents into the XML collection. If
the XML collection is not enabled, then the DAD file must be specified every time an XML
document is to be composed or decomposed.

In this exercise we will just specify rules for composition of XML documents in the DAD file
and we will enable the XML collection.

First we need to create a DAD file. To do that we need to know how we want the XML
document to be structured and where all the XML data are stored in the database. In other
words we need to define the XML document structure and map it to the XML collection
tables and columns.

Here is the structure for the XML documents that we want to compose:

= ©
S |5

A
I

&> &S

Figure 2 Structure of elements and attributes for the XML documents

The Race element will be the root element of the XML documents. The Race element
consists of two attributes (Date, Distance) and one element (Contestant). The Contestant
element can appear several times within a Race element. Each Contestant element has three
attributes (Clubname, Time, Status) and two elements (Rider, Horse), which in turn have
two and three attributes respectively.

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

An XML document with that structure wold look like this:

<?xml version="1.0" standalone="yes"?>
<IDOCTYPE Race SYSTEM "">
<Race Date="2001-06-05" Distance="1000">
<Contestant Clubname="Appaloosa Horse Club" Status="finished" Time="00:02:02">
<Rider Name="Bill Spawr" Weight="48"></Rider>
<Horse Name="Lake William" Weight="461" Birthyear="1993"></Horse>
</Contestant>
<Contestant Clubname="Horseriders" Status="finished" Time="00:02:02">
<Rider Name="Warren Stute" Weight="55"></Rider>
<Horse Name="Magellan" Weight="471" Birthyear="1995"></Horse>
</Contestant>
<Contestant Clubname="Wild Horse Club" Status="walkover">
<Rider Name="Simon Bray" Weight="53"></Rider>
<Horse Name="Spinelessjellyfish" Weight="493" Birthyear="1989"></Horse>
</Contestant>
</Race>

Creating a DAD file, with the mapping for the transformation from XML data stored in the
XML collection into XML documents, is a little more complicated. In the DAD file that we
will create we will use SQL mapping. SQL mapping works as follows:

“SQL mapping allows simple and direct mapping from relational data to XML documents
through a single SQL statement... SQL mapping is used for composition; it is not used for
decomposition...The SQL_stmt maps the columns in the SELECT clause to XML elements or
attributes that are used in the XML document. When defined for composing XML documents,
the column names in the SQL statement’s SELECT clause are used to define the value of an
attribute_node or a content of text_node. The FROM clause defines the tables containing the
data; the WHERE clause specifies the join and search condition.” (XML Extender
Administration and Programming).

In addition to that, the SQL statement must contain an ORDER BY clause, where the columns
that identify the rows uniquely must be listed. The column names listed in the SELECT clause
must be unique, if two columns have the same name then one of them must be renamed using
the AS statement (example: SELECT address, address AS address?2 ...).

Before we start with the structure we defined above, let’s look at a simpler case!

Here is a simple example of a valid SQL statement:

SELECT cname, address FROM club ORDER BY cname

Cname is the primary key of the club table, therefore it appears in the ORDER BY clause.

It is then possible to place the values of the columns into elements or attributes of the XML
document. Here is how it’s done:

To get an element Club we define (in the DAD file) the following tag:

In the DAD file: Will produce in the XML document:
<element_node name="Club"> <Club>
</element_node> </Club>

10

Institutionen for Data-
och Systemvetenskap
SU/KTH

nikos dimitrakas

DB2 & XML Laboration v. 1.0
IS4 nt2000
Modeller och sprak for
objekt- och relationsdatabaser

Stockholm
August 2007

To get an attribute address in the Club element:

In the DAD file:

<element_node name="Club">
<attribute_node name="address">
</attribute_node>

</element_node>

Will produce in the XML document:

<Club address:"">
</Club>

To add a value to the address attribute from the SQL statement:

In the DAD file:

<element_node name="Club">
<attribute_node name="address">
<column name="address"/>
</attribute_node>
</element_node>

Will produce in the XML document:

<Club address:"my address™>
</Club>

To add a value to the Club element from the SQL statement:

In the DAD file:

<element_node name="Club">
<attribute_node name="address">
<column name="address"/>
</attribute_node>
<text_node>
<column name="cname"/>
</text_node>
</element_node>

Will produce in the XML document:

<Club address:"my address™>
My club
</Club>

So if we put all this together (and a little more) we should have a DAD file:

First we start with two XML lines. DAD files
are also XML files, that follow the rules
specified in a DTD file (dad.dtd).

The DAD element is the root element of any
DAD file.

Validation is applicable only when the DAD
file is used for decomposition, therefore we
set it to NO.

The Xcollection element is where all our
code is placed.

<?xml version="1.0"?>
<IDOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">

<DAD>

<validation>NO</validation>

<Xcollection>

11

Institutionen for Data-
och Systemvetenskap
SU/KTH

nikos dimitrakas

The SQL statement is placed within an
element called SQL_stmt

These lines make sure that the resulting XML
document contains standard XML lines. The
DOCTYPE has to always match the root
element of the XML document, therefore we
set it to Club.

This is to define the root element of the
resulting XML document

This is the structure of elements and
attributes that we have defined

These are the end tags of all the elements

DB2 & XML Laboration v. 1.0
IS4 nt2000
Modeller och sprak for
objekt- och relationsdatabaser

Stockholm
August 2007

<SQL_stmt> SELECT cname, address FROM
club ORDER BY cname </SQL_stmt>

<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Club SYSTEM "'</doctype>

<root_node>

<element_node name="Club">
<attribute_node name="address">
<column name="address"/>
</attribute_node>
<text_node>
<column name="cname"/>
</text_node>
</element_node>

</root_node>
</Xcollection>
</DAD>

Now that the DAD file is ready we can enable the XML collection. The DAD file must be
saved as a file with the extension DAD. In the Command Window we can execute the

following command.

dxxadm

A response with the correct syntax of the dxxadm command comes up:

% DB2 CLP

C:\SALLIB\BIN>dxxacdm
Usage:
cxxadm
dxxadm
cdxxadm

1
cxxadm
dxxadm
dxxadm

C:\SQLLIB\BIN>

[enable_db dbname <-1 userid> <-p password>]
[disable_db dbname <-1 userid> <-p password>]
[enable_column dbname tabname column dad_file
<-t tablespace> <-v default_view> <-r root_id> <-1 userid> <-p password>

[disable_column dbname tabname column <-1 userid> <{-p passuord>]
[enable_collection dbname collectionName dad_file

<-t tablespace> <-1 userid> <{-p password>]

[disable_collection dbname collection <-1 userid> <-p password>]

[_ 0] x]

Now for the complete command that enables an XML collection:

dxxadm enable_collection riding clubcollection “D:\temp\club.dad”

12

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for

nikos dimitrakas objekt- och relationsdatabaser

Y2 DB2 CLP I[= E3

C:\SOLLIB\BIN>dxxadm enable_collection riding clubcollection "D:\temp\club.dad" -
DXXAGB2I Connecting to database riding.

DXXABB3I Enabling collection clubcollection. Please lWait.

DXXAOGTI XML Extender has successfully enabled collection clubcollec

Jud|

Clubcollection is the collection’s name, there can be more than one collection enabled on the
same database.
D:\temp\club.dad is the location of the DAD file.

When the XML collection was enabled, a new row was created in the XML_USAGE table.
The new row contains information about the XML collection (the collection name, the DAD
file etc).

Extracting XML documents can be done with the retrieve command. Try to execute the
following command in the Command Window to get more information about the retrieve
command:

retrieve

C:\SQLLIB\BIN>retrieve o
Usage: retrieve dbname collectionname result_tabname [max_ndocs|{-o cverrideType
override}]

Jud|

The retrieve command requires a result_tablename argument. It is this table that the XML
document(s) are going to be stored in. Before we can execute the retrieve command
successfully, we have to define a new table to receive the results. Here is a table definition:
CREATE TABLE results(xmldoc db2xml. XMLVARCHAR)

db2xml. XMLVARCHAR is a user defined type that comes with XML extender. This type is
similar to VARCHAR. We use this type because it is compatible with XML extender user
defined functions that we will use later.

e Create a table according to the definition above!

When this table has been created, it can be used as a result table for the retrieve command.

Here is the complete retrieve command:

retrieve riding clubcollection results

13

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser
Yz DB2 CLP M=l E3
4
C:\SQLLIB\BIN>retrieve riding clubcollection results
im:0
Connecting to database riding =
n=5:0
errCode=0:0
msgtext 'DXXQ020I XML successfully generated.
‘0
I

The XML documents that have been composed should be stored in the results table. You can
easily check the contents of the results table by executing the following SQL statement:

SELECT * FROM results

B Command Center =] B3
Besults Edit Help
=
XMLDOC
<?xml version="1.0"7%>
<YDOCTYPE Club SYSTEM ">
<Club address="2720 W. Pullman Road ">Appaloosa Horse Club</Club>
<?xml version="1.0"7>
<YDOCTYPE Club SYSTEM ">
<Club address:="Atlantic City South”>Horseriders</Club>
<?xml version="1.0"7>
<YDOCTYPE Club SYSTEM ">
<Club address:z"6293 Campbellsville Pike">Morgan Horse Club</Club’
<?xml version="1.0"7>
<YDOCTYPE Club SYSTEM ">
<Club address:z"Redwood City”>Riders Club</Club>
<?xml version="1.0"7>
<YDOCTYPE Club SYSTEM ">
<Club address="Bonneville Basin">Wild Horse Club</Club>
5 record(s) selected.
I _ﬂj

Let’s go back now to the more complicated structure, and create a DAD file.

First we must have an SQL statement that returns all the columns that we need for the XML
elements and attributes. The following SQL statement returns those columns:

SELECT date(race.racetime) as racedate, race.distance, clubname, finishingtime,
status, rname, r.weight AS rweight, hname, h.weight AS hweight, birthyear

FROM race, horse AS h, rider AS r, contestants AS ¢

WHERE race.raceid = c.raceid

AND ridername = rname

AND clubname = Memberclub

AND clubname = ownerclub

14

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

AND horsename = hname

This is a valid SQL statement but it is not valid as a DAD SQL statement. A DAD SQL
statement requires an ORDER BY clause that should contain the column that can identify
uniquely each entity. That is, one column for each entity. This facility of DB2 XML extender
IS quite new and it may appear to behave inconsistently. Not all entities’ identifiers need to be
part of the ORDER BY clause, only the ones that lead to a level where many elements of the
same type can appear. To make that more understandable we can look at our structure and the
entities that exist:

,1
L\

O

Figure 3 Entities of the XML structure

In this structure each entity is associated with one table. So the unique identifier for each
entity is the primary key (or a candidate key) of the associated table. Now there is one
problem remaining. There can only be one column that identifies uniquely an entity, but the
tables contestant, rider and horse require more than one column to identify a row uniquely.
(Of course we only need to include the unique identifier of the tables race and contestant.
The tables rider and horse produce only one entry per contestant, while there can be several
contestants per race.) One way to solve this problem is to use the table expression and the

\ J

15

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

generate_unique() function to produce a single column unique identifier. After doing all
these changes to the SQL statement, it should look like this:

SELECT race.raceid, date(race.racetime) as racedate, race.distance, c.cid,
clubname, finishingtime, status, rid, rname, r.weight AS rweight, hid, hname, h.weight
AS hweight, birthyear

FROM race, horse AS h, rider AS r, table(SELECT generate_unique() as cid, raceid,
ridername, clubname, horsename, finishingtime, status FROM contestants) AS ¢
WHERE race.raceid = c.raceid

AND ridername = rname

AND clubname = Memberclub

AND clubname = ownerclub

AND horsename = hname

ORDER BY raceid, cid

Creating the element and attribute structure of the XML document is not different from
before.

We start with the root element and we continue deeper into the structure.

The root element is the Race element.

Definition in DAD file Produces in XML document
<element_node name="Race"> <Race>
</element_node> </Race>

Now for the attributes of the Race element.

Definition in DAD file Produces in XML document
<element_node name="Race"> <Race Date="" Distance="">
<attribute_node name="Date"> </Race>

</attribute_node>

<attribute_node name="Distance">

</attribute_node>
</element_node>

Now for the Contestant element which can exist several times within a Race element.

Definition in DAD file Produces in XML document

<element_node name="Race"> <Race Date="" Distance="">
<attribute_node name="Date"> <Contestant>
</attribute_node> </Contestant>
<attribute_node name="Distance"> <Contestant>
</attribute_node> </Contestant>
<element_node name="Contestant"

16

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

multi_occurence="YES">
</element_node> .
</element_node> </Race>

After adding the rest of the elements and attributes of the structure we should have the
following:

<element_node name="Race">
<attribute_node name="Date">
</attribute_node>
<attribute_node name="Distance">
</attribute_node>
<element_node name="Contestant" multi_occurrence="YES">
<attribute_node name="Clubname">
</attribute_node>
<attribute_node name="Status">
</attribute_node>
<attribute_node name="Time">
</attribute_node>
<element_node name="Rider">
<attribute_node name="Name">
</attribute_node>
<attribute_node name="Weight">
</attribute_node>
</element_node>
<element_node name="Horse">
<attribute_node name="Name">
</attribute_node>
<attribute_node name="Weight">
</attribute_node>
<attribute_node name="Birthyear">
</attribute_node>
</element_node>
</element_node>
</element_node>

The last thing to do is to place the values from the SQL statement into the structure. When
that is done, all the parts of the DAD file are done. By putting them together (and changing
the XML declaration and the DOCTYPE element of the resulting XML document) we should
get this:

<?xml version="1.0"?>

<IDOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">
<DAD>

<validation>NO</validation>

<Xcollection>

<SQL_stmt>

17

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

SELECT race.raceid, date(race.racetime) as racedate, race.distance, cid, clubname,
status, finishingtime, rname, r.weight AS rweight, hname, h.weight AS hweight,
birthyear FROM race, table(SELECT generate_unique() as cid, raceid, ridername,
clubname, horsename, finishingtime, status FROM contestants) AS c, rider AS r,
horse AS h WHERE race.raceid = c.raceid AND ridername = rname AND clubname
= memberclub AND clubname = ownerclub AND horsename = hname ORDER BY
raceid, cid
</SQL_stmt>
<prolog>?xml version="1.0" standalone="no"?</prolog>
<doctype>!DOCTYPE Race SYSTEM "d:\temp\race.dtd"</doctype>
<root_node>
<element_node name="Race">
<attribute_node name="Date">
<column name="racedate"/>
</attribute_node>
<attribute_node name="Distance">
<column name="distance"/>
</attribute_node>
<element_node name="Contestant" multi_occurrence="YES">
<attribute_node name="Clubname">
<column name="clubname"/>
</attribute_node>
<attribute_node name="Status">
<column name="status"/>
</attribute_node>
<attribute_node name="Time">
<column name="finishingtime"/>
</attribute_node>
<element_node name="Rider">
<attribute_node name="Name">
<column name="rname"/>
</attribute_node>
<attribute_node name="Weight">
<column name="rweight"/>
</attribute_node>
</element_node>
<element_node name="Horse">
<attribute_node name="Name">
<column name="hname"/>
</attribute_node>
<attribute_node name="Weight">
<column name="hweight"/>
</attribute_node>
<attribute_node name="Birthyear">
<column name="birthyear"/>
</attribute_node>
</element_node>
</element_node>

18

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

</element_node>
</root_node>
</Xcollection>
</DAD>

The DAD file contain information about the XML declaration and the DOCTYPE element of
the XML documents to be composed. This information is the following:

The XML document is composed according to XML version 1.0 and it is not
standalone (it is associated to a DTD file):

<prolog>?xml version="1.0" standalone="no"?</prolog>

The DOCTYPE of the XML document is Race. That means that the root element of the
XML document is an element called Race. The SYSTEM specifies that the XML document
is supposed to follow the rules in the DTD file d:\temp\race.dtd:

<doctype>!DOCTYPE Race SYSTEM "d:\temp\race.dtd"</doctype>

The file d:\temp\race.dtd does not exist yet. In chapter 4.1.4 we will create that DTD file
and we will use the XML documents composed with this DAD file.

Assuming that the DAD file has been saved as d:\temp\racel.dad we can enable an XML
collection called racecollection by submitting the following command in the Command
Window:

dxxadm enable_collection riding racecollection d:\temp\racel.dad

Y% DB2Z CLP [_ O[]

C:\SALLIB\BIN>Dxxadm enable_collection riding racecollection d:\temp\racel.dad
DXXA0O2I Connhecting to database riding.

DXXAGB3I Enabling collection racecollection. Please Wait.

DXXAGEBTI XML Extender has successfully enabled collection racecollec

When the new XML collection has been enabled use the retrieve command to compose XML
documents and place them in the results table:

retrieve riding racecollection results

Y<DB2 CLP [_O]]
]
C:\SOLLIB\BIN>retrieve riding racecollection results
i : 0 1
Connecting to database riding
h=5:0
errCode=0:0
msgtext ‘DXXQO20I XML successfully generated.
':0
A

19

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

The XML documents are now stored in the table results.

4.1.3 Extract XML documents into XML files

So far we have composed XML documents and stored them in a table. It can be desired to
extract these XML documents from the database and keep them as separate files. To do that
we will use the XML extender’s Content function.

Like all other functions, the Content function can be used in a SELECT statement. The
Content function has three different sets of parameters. The one that we will use is the
following:

Content(xmlobj, filename)

xmlobj is the XML document as an XMLVARCHAR.

Filename is a string with the fully qualified filename and location of the file where the XML
document shall be saved.

When this function is executed it returns the filename where the XML document was saved.

Here is an example of how to use this function:
SELECT db2xml.Content(xmldoc, 'd:\temp\my.xml") From results

This command produces a file called d:\temp\my.xml which contains the XML document
that is stored in the xmldoc column of the results table. The problem with this command is
that it tries to save each and every XML document from the xmldoc column as a file called
d:\temp\my.xml. Consequently only the last XML document gets saved. The next figure
shows what this command returns:

B Command Center =13
Besults Edit Help
Sp|- @
Script Resultsl
=

--------------------------- Command entered -----------------------c--m-
SELECT db2xml.Content(xmldoc, ('d:\temp\my.xml’)) From results

d:\tempimy.xml
d:\tempimy.xml
d:\tempi\my.xml
d:\tempimy.xml
d:\tempimy.xml

5 record(s) selected.

P

KN —

20

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

An easy way to produce unique names for all the XML files saved, is to use the
generate_unique() function to produce the filename:

SELECT db2xml.Content(xmldoc, (‘d:\temp\my' CONCAT HEX(generate unique())
CONCAT ".xml")) From results

This command will produce a unique key for every row in the results table, and then
concatenate a hexadecimal representation of that unique key into the filename. The next
figure shows the result of this command:

B Command Center 1 [=] B3
Besults Edit Help

@ - [O]

Script Results |

--------------------------- Command entered ---------------------------- |
SELECT db2xml.Content(xmldoc, ('d:\temp\my’' CONCAT HEX(generate_unique()) CONCAT '.xml")) From results

d:\temp\my20000605095129603415000000 . xml
d:\temp\my20000605095129687993000000 . xml
d:\temp\my20000605095129708202000000. xml
d:\temp\my20000605095129711031000000. xml
d:\temp\my20000605095129713507000000 . xml

5 record(s) selected.

"L

L —

4.1.4 Store XML documents in an XML column

In this section we will create an XML column and store the XML documents, that we
generated before, in it. To accomplish that we have to do the following:

Create a database with a table where the XML documents will be stored
Enable the database for XML

Prepare a DTD for controlling the incoming XML documents

Store the DTD in the DTD_REF table

Prepare a DAD file for the XML column

Enable the XML column

Insert XML documents into the XML column

NoakownE

e Start by creating a database!
Here is a command that creates a database:

CREATE DATABASE myxmilcol
The database is now ready to be enabled for XML.

e Enable the database for XML by issuing the following command in the Command
Window:

dxxadm enable_db myxmicol

21

DB2 & XML Laboration v. 1.0
IS4 nt2000
Modeller och sprak for
objekt- och relationsdatabaser

Stockholm
August 2007

Institutionen for Data-
och Systemvetenskap
SU/KTH

nikos dimitrakas

e Connect to the new database and create a table for the XML documents! The table should
have a column of one of the three XML extender types (XMLVARCHAR, XMLCOLB,
XMLFILE). Here we use XMLVARCHAR.

CONNECT TO myxmicol
CREATE TABLE xmlcol (xmldoc DB2XML.XMLVARCHAR)

Note that this table can contain many other columns. Those columns do not interfere with
the XML column.

When an XML document is inserted into the database, it has to be controlled. If there is no
control of incoming XML documents, the database will soon become corrupt. To control an
XML document we need a set of rules of what is and is not allowed. Those rules can be
defined in a DTD file.

Before defining a DTD, we must know the exact structure of the XML documents that we
want the DTD file to control (and accept). The XML documents that we want to insert into
the XML column, are the ones we created earlier from the XML data in the XML collection.

So the structure is already defined.

Now let’s create a DTD file to represent that structure.

First we have a Race element

The Race element has a sub-element called
Contestant, that can occur zero or more
times (denote this with an asterisk after the
element name)

The Race element has two attributes (Date
and Distance)

We continue with the Contestant element

The Contestant element has two sub-
elements called Rider and Horse, that can
occur once and only once within a
Contestant element

The Contestant element has three attributes
(Clubname, Status and Time) The first two
have to be there, the third can be missing.
Status can only be one of four predefiened

22

<IELEMENT Race>

<IELEMENT Race (Contestant*)>

<IELEMENT Race (Contestant*)>
<IATTLIST Race
Date CDATA #REQUIRED
Distance CDATA #REQUIRED>

<I[ELEMENT Contestant>

<IELEMENT Contestant (Rider, Horse)>

<IELEMENT Contestant (Rider, Horse)>
<IATTLIST Contestant

Clubname CDATA #REQUIRED

Status (finished | walkover | disqualified

Institutionen for Data-
och Systemvetenskap
SU/KTH

nikos dimitrakas

values: finished, walkover, disqualified and
dropout

The Rider element. The Rider element has no
content.

The Rider element has two attributes (Name
and Weight). Name is required, Weight is
not

The Horse element. The Horse element has
no content
The Horse element has three attributes
(Name, Weight and Birthyear). Only Name
is required

DB2 & XML Laboration v. 1.0
IS4 nt2000
Modeller och sprak for
objekt- och relationsdatabaser

Stockholm
August 2007

| dropout) #REQUIRED
Time CDATA #IMPLIED>

<IELEMENT Rider EMPTY>

<IELEMENT Rider EMPTY>
<IATTLIST Rider
Name CDATA #REQUIRED
Weight CDATA #IMPLIED>

<IELEMENT Horse EMPTY>

<IELEMENT Horse EMPTY>
<IATTLIST Horse
Name CDATA #REQUIRED
Weight CDATA #IMPLIED
Birthyear CDATA #IMPLIED>

e Put all the elements together and save the file, for example as d:\temp\Race.dtd

Here is the content of the file Race.dtd:

<IELEMENT Race (Contestant*)>
<IATTLIST Race

Date CDATA #REQUIRED

Distance CDATA #REQUIRED>
<IELEMENT Contestant (Rider, Horse)>
<IATTLIST Contestant

Clubname CDATA #REQUIRED

Status (finished | walkover | disqualified | dropout) #REQUIRED

Time CDATA #IMPLIED>
<IELEMENT Rider EMPTY>
<IATTLIST Rider

Name CDATA #REQUIRED

Weight CDATA #IMPLIED>
<IELEMENT Horse EMPTY>
<IATTLIST Horse

Name CDATA #REQUIRED

Weight CDATA #IMPLIED

Birthyear CDATA #IMPLIED>

23

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

Now we can insert the DTD file into the DTD_REF table (which was created when we
enabled the database for XML).

Execute the following INSERT statement, to insert the DTD into the DTD_REF table of the
database:

INSERT INTO db2xm!|.DTD_REF VALUES (‘d:\temp\Race.dtd’,
db2xml. XMLClobFromFile(‘d:\temp\Race.dtd’), O, ‘userX’, ‘userZ’, ‘userY”)

The first value specifies a name for the inserted DTD file, this is also the primary key of the
DTD_REF table. It is usual to set the fully qualified name of the file as this value.

The second value is the DTD file itself. This value has to be of XMLCLOB type, hence we
use the XML extender’s function XMLClobFromFile to import the DTD file into an
XMLCLOB.

The third value (called USAGE_COUNT) shows how many DAD files refer to this DTD file.
It has to always be set to O when a DTD file is first being inserted.

The rest of the parameters are optional and specify the following: AUTHOR, CREATOR,
UPDATOR.

When a DTD file has been inserted into the DTD_REF table, it can be referenced by DAD
files associated with XML columns or XML collections in the database in question.

We can now define the DAD file for the XML column. The DAD file will contain a reference
to the DTD file and information about the side-tables. It is not important to have side-tables
but we will use one side-table to illustrate how this feature works. We will have a side-table
with two columns: Date and Distance.

The DAD file starts, as before, with the following lines:

<?xml version="1.0"?>

<IDOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">

<DAD>

Then we have an element called dtdid, where we define the DTD to be used to control
incoming XML documents:

<dtdid>d:\temp\Race.dtd</dtdid>

Then the validation element, in this case we set the validation to YES. This activates the
control of the incoming XML documents:

<validation>YES</validation>
Now we have the Xcolumn element:

<Xcolumn>

24

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

Within this element we can specify the side-tables (in this case only one side-table), and the
mapping between elements or attributes and the columns of the side-tables. In this way the
side-tables will be automatically updated every time a new XML documents is inserted. Here
is the content of the Xcolumn element:

A table element with a name attribute. That is <table name="race_st">
the name of the side-table.

A column element for each column of the side- <column name="Racedate”

table. The name attribute indicates the name of type="date”

the column, the type attribute indicates the data- path="/Race/@Date”
type of the column, the path attribute indicates multi_occurence="NO”"/>
where in the XML document’s structure to get

the value from, the multi_occurence attribute <column name="Racedistance”
indicates whether or not the specified path can type="integer”

appear many times within an XML document. path="/Race/@Distance”
(Note that an empty element can be closed with multi_occurence="NO”"/>

a “/” in the end of the opening tag)

And the closing tag of the table element. </table>

And of course the closing tags of the Xcolumn element and the DAD element:

</Xcolumn>
</DAD>

e Save now the DAD file!
e Enable the XML column! Here is the command:
dxxadm enable_column myxmlcol xmlcol xmldoc d:\temp\racecolumn.dad

where myxmicol is the database name, xmicol is the name of the table and xmldoc is the
name of the column in the table.

Y& DB2Z CLP [_[O]x]

C:A\SOLLIB\BIN>dxxadm enable_column MYAMLCOL xmlcol xmldoc d:\temp\racecolumn.dad o
DXXABB2I Connecting to database MYXMLCOL.

DAXABBOI Enabling column xmldoc. Please Wait.

DXXAB22I Column XMLDOC enabled.

C:\SQLLIB\NBIN>_ hd

Now that the XML column has been enabled, we can insert XML documents into it. To insert
an XML document we can execute an INSERT statement. When inserting an XML document
into a column of a table, we must always think of the data type of the column. The column, to
which we will insert the XML documents is of the following type:
DB2XML.XMLVARCHAR. Fortunately, there is a set of functions for transforming XML

25

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

documents to and from all the different XML data types. One of those functions is this:
DB2XML.XMLVarcharFromFile(). This function takes one argument: the full filename as a
string and returns the content of that file (the XML document) as an
DB2XML.XMLVARCHAR. Here is an example of an INSERT statement:

INSERT INTO xmlcol (xmldoc) VALUES
(DB2XML.XMLVarcharFromFile(‘d:\temp\new20000603132654013484000000.xml"))

The file d:\temp\new20000603132654013484000000.xml is just one of the files we
generated before.

When the XML document has been inserted into the database, the side tables have also been
updated. In our case there should be one new record in the race_st table.

If the XML document does not comply with the DTD file, specified in the DAD file, then it
will be rejected. That can easily be tested; try to insert an XML document with the wrong type
of elements or attributes.

Here is what happened when a faulty XML document is inserted into the XML column:

B Command Center A= E
Results Edit Tools Help w e e

r B HE 903 D &2 @3

Seript Results | ACCESS F'Ianl

————————————————————————————————————— Command Entered ----------—---—-— e
insert into xmlcol (xmldoc) walues (DEZXML.:MLVarcharFrowFile('d:‘\temp'faulty.xml')) ;
DEZ21034E The command was processed as an 3QL statement because it was not a

walid Command Line Processor command. During 50L processing it returned:

30L0O438N Application raised error with diagnostic text: "DEXDOC00OE 4n invalid

ML document is rejected. . SQLATATE=38x14

I
a o

An XML document is rejected when:

e The element structure is not as specified in the DTD file

e The attributes of the elements are not following the rules of the DTD file

e The SYSTEM of the XML document (specified in the DOCTYPE element) is not the
same as the one in the DAD file. Both should point to the same DTD file.

On the other hand an XML document that is defined as standalone (in the XML declaration)
can be accepted if it does not break any of the rules above.

4.1.5 Run queries against the XML column

26

Institutionen for Data- DB2 & XML Laboration v. 1.0 Stockholm

och Systemvetenskap IS4 nt2000 August 2007
SU/KTH Modeller och sprak for
nikos dimitrakas objekt- och relationsdatabaser

4.2 More to do

5 Completed Lab requirements
All the exercises in chapter 4 are compulsory.
Before the 13™ of October, you should make a short (oral) presentation of your work.

You can book time for the presentation at the compendium’s homepage or by contacting
nikos.

6 Internet Resources

XML & DTD Tutorials

http://L238.dsv.su.se/tutorial
http://pdbeam.uwaterloo.ca/~rlander/ XML Tutorial/xml tutorial.html

DB2 XML extender

http://www-4.ibm.com/software/data/db2/extenders/xmlext/

7 Epilogue

When all this is done, you should have a quite good understanding of how to use DB2 to
manage XML documents and XML data.

I hope you have enjoyed this compendium. Please come with feedback!
The Author

hod dimitral

27

