
INSTITUTIONEN FÖR DATA-
OCH SYSTEMVETENSKAP
SU / KTH

DB2 & XML
LABORATION

v. 2.0

IS4

Modeller och språk för objekt- och

relationsdatabaser

HÖSTTERMINEN 2001

http://L238.dsv.su.se/courses/IS4/

nikos dimitrakas

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 2

Table of contents
1 Introduction .. 3

1.1 Homepage .. 3

1.2 The environment ... 3

2 XML & DB2.. 3
2.1 XML ... 3

2.1.1 XML Explanation... 4
2.1.2 DTD Explanation.. 5

2.2 XML in DB2 .. 6
2.2.1 XML collection .. 6
2.2.2 XML column .. 6

3 Database.. 7

4 Exercises ... 7
4.1 Step-by-step exercise... 7

4.1.1 Create a database .. 8
4.1.2 Enable the database for XML (as an XML collection) and compose XML documents 9
4.1.3 Extract XML documents into XML files.. 21
4.1.4 Store XML documents in an XML column .. 23
4.1.5 Run queries against the XML column .. 29

4.2 More to do.. 35

5 Completed Lab requirements ... 38

6 Internet Resources.. 38

7 Epilogue .. 38

Table of figures

Figure 1 XML and DTD ... 4

Figure 2 Main components of XML in DB2.. 7

Figure 3 Database model .. 7

Figure 4 Structure of elements and attributes for the XML documents 10

Figure 5 Entities of the XML structure.. 16

Figure 6 XML structure to be implemented ... 37

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 3

1 Introduction
This compendium contains the following:
• An introduction to XML
• An introduction to DB2’s facilities for handling XML data
• Exercises on using DB2 for managing XML data

1.1 Homepage
Information about this compendium can be found here:
http://L238.dsv.su.se/courses/IS4

The following can be found at this address:
• Feedback form
Use this form to send comments/questions about the compendium to the author.
• FAQ
Here there is a list of corrections and explanations.
• Links
Internet resources that can be helpful when working with the compendium.
• Files
The newest version of the compendium and all the files needed to complete the exercises in
the compendium.

1.2 The environment
• IBM DB2 Universal Database version 6, with XML extender

The following facilities of DB2 will be used:
 DB2 Command Window
 DB2 Command Center
 DB2 Information Center
 Editor (of your choice)

More information on DB2 and its facilities can be found in the “Introduktion till DB2 v. 6”-
compendium.

2 XML & DB2
This chapter introduces XML and DB2’s facilities for working with XML. This is not a
complete reference of either XML or DB2’s XML extender. The following sections only
present the aspects of XML and DB2 that are needed to complete the exercises that follow.

2.1 XML
XML (eXtensible Markup Language) is a language with many uses. One of them is to
transport data between different systems.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 4

XML consists of two languages, one language for the actual XML documents and one
language for specifying how the XML documents1 should be structured, called DTD
(Document Type Definition). Not all XML documents are associated to DTDs. Here is an
example of an XML document and its DTD:

XML Document (saved in a file called “book.xml”) DTD (file “book.dtd”)
<?xml version="1.0"?>
<!DOCTYPE book SYSTEM "c:\dxx\samples\dtd.book.dtd">
<book>
 <chapter id="1" date="07/01/1997">
 <section>This is a section in Chapter One.</section>
 </chapter>
 <chapter id="2" date="01/02/1997">
 <section>This is a section in Chapter Two.</section>
 <footnote>A footnote in Chapter Two is here.</footnote>
 </chapter>
 <price date="12/22/1998" time="11.12.13" timestamp="1998-12-22-11.12.13">
 38.281
 </price>
</book>

<?xml encoding="US-ASCII"?>
<!ELEMENT book (author*,chapter*,price)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT chapter (section*, footnote*)>
<!ATTLIST chapter id (1|2|3) #REQUIRED
 date CDATA #IMPLIED>
<!ELEMENT price (#PCDATA)>
<!ATTLIST price date CDATA #IMPLIED
 time CDATA #IMPLIED
 timestamp CDATA #IMPLIED>
<!ELEMENT section (#PCDATA)>
<!ELEMENT footnote (#PCDATA)>

 Both languages are case sensitive!

DTD
rules for

XML
document

XML
document

Figure 1 XML and DTD

An XML document can refer to a DTD file.
A DTD file can be associated with many XML
documents. When an XML document refers to a
DTD file then the XML documents content is
supposed to follow the rules in the DTD file.

2.1.1 XML Explanation
Elements:

In the previous example chapter is an element. Everything from the <chapter> to the
</chapter> constitutes an element chapter.

Every XML document must have a root element, an element that has its start tag in the
beginning of the XML document and its end tag at the end of the XML document. This
element may appear only once in the XML document.

Attributes:

The element chapter has an attribute id and an attribute date. All attributes of an element
appear within the starting tag of the element. Attributes have a value that is within double
quotation marks (“).

1 The term XML document refers to a file with the extension .xml.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 5

Structure:

<element attribute1=”value” attribute2=”value2”>
element content
</element>

The element content can be empty, text or other elements.

XML declaration & DOCTYPE element

The first two lines of any XML document are always the XML declaration & the DOCTYPE
element:

XML declaration:
<?xml version="1.0" standalone=”no”?>
In the XML declaration we define the XML version and whether there is a DTD file with
rules for the XML structure or not

DOCTYPE element:
<!DOCTYPE Book SYSTEM "c:\ dtd\book.dtd">
The DOCTYPE points out the root element of the XML document and the SYSTEM points
out the DTD file for the XML document.

2.1.2 DTD Explanation
The DTD file contains rules to be followed when constructing an XML document.

It defines the elements that can appear in the XML document:
<!ELEMENT element-name>

It defines the elements that can appear within an element:
<!ELEMENT element-name (element2-name)>
or the type of the element content:
<!ELEMENT element-name (#PCDATA)>

It also defines the attributes that an element can have, with the appropriate rules (the type of
the attribute, whether it has to be there or not, etc.) :
<!ATTLIST element-name
 attribute1-name CDATA #IMPLIED
 attribute2-name CDATA #IMPLIED>

For more help on how to construct an XML document visit one of the following tutorial sites
(tutorials for both XML and DTD):

• http://L238.dsv.su.se/tutorial
• http://www.w3schools.com/xml/default.asp
• http://www.spiderpro.com/bu/buxmlm001.html

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 6

2.2 XML in DB2
DB2 provides two ways for working with XML documents and XML data2:
• XML collection
• XML column

2.2.1 XML collection
When XML data is stored in a relational database, then this database is called an XML
collection. DB2 XML extender provides functions for decomposing XML documents into
relational data to be stored in the XML collection, and functions for composing XML
documents from XML data stored in the XML collection.
Since XML documents are based on hierarchical models and relational databases are based on
relational models, it is important to have a mapping between the two models. This mapping
can then be used for transformations in both directions. The mapping is defined in DAD
(Document Access Definition) files. A DAD file is an XML document that has the extension
.dad and follows the rules defined in the file dad.dtd3. The DAD file is then used when
enabling the XML collection. At that time DB2 verifies that the tables referred in the DAD
file exist, otherwise they are created.
In chapter 4 there is a more detailed description of how to do all this in practice.

2.2.2 XML column
XML column is a different approach than XML collection. XML column is an XML enabled
database that contains intact XML documents. Those XML documents are stored in a certain
table that has a column of one of these three types: XMLCLOB, XMLVARCHAR, XMLFile.
That column has to be enabled and associated with a DAD file. In the DAD file there can be
reference to a DTD file for validating the incoming XML documents, and rules for creating
side tables4 and storing XML data in them. The DTD file must have been registered in the
DTD_REF table that is created when a database is being enabled for XML.
There are more details about this in chapter 4.

2 With the term XML data we refer to the contents of XML documents, even when the data has been
transformed. Data that is going to become the content of an XML document can also be referred to as
XML data
3 The file dad.dtd can be found in the following directory:
c:\dxx\dtd on all the machines that have the DB2 XML extender installed.
4 A side table is a table that contains data from the XML document. The side tables are used to improve
performance when searching through the XML documents. Usually, only some of the XML data is placed
in the side tables – the data that is used most frequently when searching.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 7

Database

DTD
rules for

XML
documentXML

document

XML
document

XML
document

DAD file DAD.DTD
rules for
DAD files

Figure 2 Main components of XML in DB2

All the XML components are stored
in the database. The XML documents,
DTD files and DAD files are stored in
user tables, while the DAD.DTD file
is stored in the database manager.

The database can of course contain
other non XML specific components
too. Those components are not
represented in Figure 2.

3 Database
For the exercises that follow we will use a database about horse-riding. The database consists
of five tables. The tables are connected with foreign keys as shown in Figure 3.

Figure 3 Database model
Scripts for creating and populating the database can be found here:
• \\DB-SRV-1\StudKursInfo\IS4 ht2001\DB2-XML\Scripts, or
• http:\\L238.dsv.su.se\courses\is4

4 Exercises
This chapter is divided into two sections. In the first section we go through an exercise step by
step from the beginning to the end. In the second section a similar exercise is described and
has to be completed based on the knowledge acquired from the first section.

4.1 Step-by-step exercise
In this exercise we will do the following:
• Create a database

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 8

• Enable the database for XML (as an XML collection) and compose XML documents from
the data in the XML collection

• Extract XML documents into XML files
• Store XML documents in an XML column
• Run queries against the XML column

4.1.1 Create a database
The database can easily be created and populated by using the scripts (see chapter 3). To run
the scripts follow these steps:
• Open the command center (Start – Programs – DB2 for Windows NT – Command

Center)!
• Go to the Script tab and activate the script radio button!

• Copy and then paste the contents of the first script file (riding.tables.script) into the

command center!

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 9

• Execute the script by pressing the execute button
When the execution of the script is finished, your database has been created. For populating
the database use the second script file (riding.insert.all.script).

4.1.2 Enable the database for XML (as an XML collection) and compose XML
documents
When the database has been created, it is just an ordinary relational database. If the database
is going to be used as an XML collection then it has to be enabled for XML. That is done by
using the following:
• Start the Command Window (Start > Programs > DB2 for Windows NT > Command

Window)
• Execute this command in the Command Window:

Dxxadm enable_db riding

Sometimes DB2 responds with a funny/confusing message (see image that follows). If that
message comes up then the operation has gone well and the database has been enabled
successfully.

When that is done there should be a few more tables in the database. Those tables are used by
the XML extender. For example the table DTD_REF contains information about DTD files.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 10

The next step is to enable the XML collection. That is not a necessary step. To enable the
XML collection we need to have a DAD file. The DAD file is specified when enabling an
XML collection. The DAD file can contain information on how to compose XML documents
from the XML collection and how to decompose XML documents into the XML collection. If
the XML collection is not enabled, then the DAD file must be specified every time an XML
document is to be composed or decomposed.

In this exercise we will just specify rules for composition of XML documents in the DAD file
and we will enable the XML collection.

First we need to create a DAD file. To do that we need to know how we want the XML
document to be structured and where all the XML data are stored in the database. In other
words we need to define the XML document structure and map it to the XML collection
tables and columns.

Here is the structure for the XML documents that we want to compose:

Race

Contestant

Rider Horse

Date Distance

Clubname Time Status

Name Weight Name Birthyear Weight

Attribute

Element

Figure 4 Structure of elements and attributes for the XML documents

The Race element will be the root element of the XML documents. The Race element
consists of two attributes (Date, Distance) and one element (Contestant). The Contestant
element can appear several times within a Race element. Each Contestant element has three
attributes (Clubname, Time, Status) and two elements (Rider, Horse), which in turn have
two and three attributes respectively.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 11

An XML document with that structure wold look like this:

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE Race SYSTEM "">
<Race Date="2001-06-05" Distance="1000">
 <Contestant Clubname="Appaloosa Horse Club" Status="finished" Time="00:02:02">
 <Rider Name="Bill Spawr" Weight="48"></Rider>
 <Horse Name="Lake William" Weight="461" Birthyear="1993"></Horse>
 </Contestant>
 <Contestant Clubname="Horseriders" Status="finished" Time="00:02:02">
 <Rider Name="Warren Stute" Weight="55"></Rider>
 <Horse Name="Magellan" Weight="471" Birthyear="1995"></Horse>
 </Contestant>
 <Contestant Clubname="Wild Horse Club" Status="walkover">
 <Rider Name="Simon Bray" Weight="53"></Rider>
 <Horse Name="Spinelessjellyfish" Weight="493" Birthyear="1989"></Horse>
 </Contestant>
</Race>
Creating a DAD file, with the mapping for the transformation from XML data stored in the
XML collection into XML documents, is a little more complicated. In the DAD file that we
will create we will use SQL mapping. SQL mapping works as follows:
“SQL mapping allows simple and direct mapping from relational data to XML documents
through a single SQL statement… SQL mapping is used for composition; it is not used for
decomposition…The SQL_stmt maps the columns in the SELECT clause to XML elements or
attributes that are used in the XML document. When defined for composing XML documents,
the column names in the SQL statement’s SELECT clause are used to define the value of an
attribute_node or a content of text_node. The FROM clause defines the tables containing the
data; the WHERE clause specifies the join and search condition.” (XML Extender
Administration and Programming).
In addition to that, the SQL statement must contain an ORDER BY clause, where the columns
that identify the rows uniquely must be listed. The column names listed in the SELECT clause
must be unique, if two columns have the same name then one of them must be renamed using
the AS statement (example: SELECT address, address AS address2 …).

Before we start with the structure we defined above, let’s look at a simpler case!

Here is a simple example of a valid SQL statement:

SELECT cname, address FROM club ORDER BY cname

Cname is the primary key of the club table, therefore it appears in the ORDER BY clause.

It is then possible to place the values of the columns into elements or attributes of the XML
document. Here is how it’s done:

To get an element Club we define (in the DAD file) the following tag:

In the DAD file:

Will produce in the XML document:

<element_node name="Club">
</element_node>

<Club>
</Club>

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 12

To get an attribute address in the Club element:

In the DAD file:

Will produce in the XML document:

<element_node name="Club">
 <attribute_node name="address">
 </attribute_node>
</element_node>

<Club address: "">
</Club>

To add a value to the address attribute from the SQL statement:

In the DAD file:

Will produce in the XML document:

<element_node name="Club">
 <attribute_node name="address">
 <column name="address"/>
 </attribute_node>
</element_node>

<Club address: "my address">
</Club>

To add a value to the Club element from the SQL statement:

In the DAD file:

Will produce in the XML document:

<element_node name="Club">
 <attribute_node name="address">
 <column name="address"/>
 </attribute_node>
 <text_node>
 <column name="cname"/>
 </text_node>
</element_node>

<Club address: "my address">
 My club
</Club>

So if we put all this (and a little more) together, we should have a DAD file:

First we start with two XML lines. DAD files
are also XML files, that follow the rules
specified in a DTD file (dad.dtd).

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">

The DAD element is the root element of any
DAD file.
Validation is applicable only when the DAD
file is used for decomposition, therefore we
set it to NO.
The Xcollection element is where all our
code is placed.

<DAD>

<validation>NO</validation>

<Xcollection>

The SQL statement is placed within an
element called SQL_stmt

<SQL_stmt> SELECT cname, address FROM
club ORDER BY cname </SQL_stmt>

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 13

These lines make sure that the resulting XML
document contains standard XML lines. The
DOCTYPE has to always match the root
element of the XML document, therefore we
set it to Club.

<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Club SYSTEM ""</doctype>

This is to define the root element of the
resulting XML document

<root_node>

This is the structure of elements and
attributes that we have defined

<element_node name="Club">
 <attribute_node name="address">
 <column name="address"/>
 </attribute_node>
 <text_node>
 <column name="cname"/>
 </text_node>
</element_node>

These are the end tags of all the elements </root_node>
</Xcollection>
</DAD>

Now that the DAD file is ready we can enable the XML collection. The DAD file must be
saved as a file with the extension DAD (for example as D:\temp\club.dad). In the DB2
Command Window we can execute the following command.

dxxadm

A response with the correct syntax of the dxxadm command comes up:

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 14

Now for the complete command that enables an XML collection:

dxxadm enable_collection riding clubcollection “D:\temp\club.dad”

Clubcollection is the collection’s name, there can be more than one collection enabled on the
same database.
D:\temp\club.dad is the location of the DAD file.

When the XML collection was enabled, a new row was created in the XML_USAGE table.
The new row contains information about the XML collection (the collection name, the DAD
file etc).

Note that if for some reason the DAD file needs to be altered, it is not enough to change the
file. The XML Collection should be disabled (dxxadm disable command) and then enabled
with the altered DAD file. It is only then that the XML Collection sees the changes!

Extracting XML documents can be done with the retrieve command. Try to execute the
following command in the Command Window to get more information about the retrieve
command:

retrieve

The retrieve command requires a result_tablename argument. It is this table that the XML
document(s) are going to be stored in. Before we can execute the retrieve command
successfully, we have to define a new table to receive the results. Here is a table definition:

CREATE TABLE results(xmldoc db2xml.XMLVARCHAR)

db2xml.XMLVARCHAR is a user defined type that comes with XML extender. This type is
similar to VARCHAR. We use this type because it is compatible with XML extender user
defined functions that we will use later.

• Create a table according to the definition above! You may need to connect to the database

first with the command connect to riding.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 15

When this table has been created, it can be used as a result table for the retrieve command.

Here is the complete retrieve command:

retrieve riding clubcollection results

The XML documents that have been composed should be stored in the results table. You can
easily check the contents of the results table by executing the following SQL statement:

SELECT * FROM results

Let’s go back now to the more complicated structure (from page 10), and create a DAD file.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 16

First we must have an SQL statement that returns all the columns that we need for the XML
elements and attributes. The following SQL statement returns those columns:

SELECT date(race.racetime) as racedate, race.distance, clubname, finishingtime,
status, rname, r.weight AS rweight, hname, h.weight AS hweight, birthyear
FROM race, horse AS h, rider AS r, contestants AS c
WHERE race.raceid = c.raceid
AND ridername = rname
AND clubname = Memberclub
AND clubname = ownerclub
AND horsename = hname

This is a valid SQL statement but it is not valid as a DAD SQL statement. A DAD SQL
statement requires an ORDER BY clause that should contain the column that can identify
uniquely each entity. That is, one column for each entity. This facility of DB2 XML extender
is quite new and it may appear to behave inconsistently. Not all entities’ identifiers need to be
part of the ORDER BY clause, only the ones that lead to a level where many elements of the
same type can appear. To make that more understandable we can look at our structure and the
entities that exist:

Race

Contestant

Rider

Horse

Date Distance

Clubname Time Status

Name Weight

Name Birthyear Weight

Figure 5 Entities of the XML structure

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 17

In this structure each entity is associated with one table. So the unique identifier for each
entity is the primary key (or a candidate key) of the associated table. Now there is one
problem remaining. There can only be one column that identifies uniquely an entity, but the
tables contestant, rider and horse require more than one column to identify a row uniquely.
(Of course we only need to include the unique identifier of the tables race and contestant.
The tables rider and horse produce only one entry per contestant, while there can be several
contestants per race.) One way to solve this problem is to use the table expression and the
generate_unique() function to produce a single column unique identifier5. After making all
these changes in the SQL statement, it should look like this:

SELECT race.raceid, date(race.racetime) as racedate, race.distance, c.cid,
clubname, finishingtime, status, rid, rname, r.weight AS rweight, hname, h.weight AS
hweight, birthyear
FROM race, horse AS h, rider AS r, table(SELECT generate_unique() as cid, raceid,
ridername, clubname, horsename, finishingtime, status FROM contestants) AS c
WHERE race.raceid = c.raceid
AND ridername = rname
AND clubname = Memberclub
AND clubname = ownerclub
AND horsename = hname
ORDER BY raceid, cid

Creating the element and attribute structure of the XML document is not different from
before.

We start with the root element and we continue deeper into the structure.

The root element is the Race element.

Definition in DAD file

Produces in XML document

<element_node name="Race">
</element_node>

<Race>
</Race>

Now for the attributes of the Race element.

Definition in DAD file

Produces in XML document

<element_node name="Race">
 <attribute_node name="Date">
 </attribute_node>
 <attribute_node name="Distance">
 </attribute_node>
</element_node>

<Race Date="" Distance="">
</Race>

5 In certain cases this technique may not work. In those cases we may need to create a unique identifier for
an entity in a different way, for example by concatenating the components of the primary key.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 18

Now for the Contestant element which can exist several times within a Race element.

Definition in DAD file

Produces in XML document

<element_node name="Race">
 <attribute_node name="Date">
 </attribute_node>
 <attribute_node name="Distance">
 </attribute_node>
 <element_node name="Contestant"
multi_occurrence=”YES”>
 </element_node>
</element_node>

<Race Date="" Distance="">
 <Contestant>
 </Contestant>
 <Contestant>
 </Contestant>
 .
 .
 .
</Race>

After adding the rest of the elements and attributes of the structure we should have the
following:

<element_node name="Race">
 <attribute_node name="Date">
 </attribute_node>
 <attribute_node name="Distance">
 </attribute_node>
 <element_node name="Contestant" multi_occurrence="YES">
 <attribute_node name="Clubname">
 </attribute_node>
 <attribute_node name="Status">
 </attribute_node>
 <attribute_node name="Time">
 </attribute_node>
 <element_node name="Rider">
 <attribute_node name="Name">
 </attribute_node>
 <attribute_node name="Weight">
 </attribute_node>
 </element_node>
 <element_node name="Horse">
 <attribute_node name="Name">
 </attribute_node>
 <attribute_node name="Weight">
 </attribute_node>
 <attribute_node name="Birthyear">
 </attribute_node>
 </element_node>
 </element_node>
</element_node>

The last thing to do is to place the values from the SQL statement in the structure. It is
important that the order that the values appear in the SQL statement is the same with the order

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 19

that they appear in the XML structure (even though there can be columns in the SQL
statement that do not appear in the XML structure). When that is done, all the parts of the
DAD file are done. By putting them together (and changing the XML declaration and the
DOCTYPE element of the resulting XML document) we should get this:

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">
<DAD>
<validation>NO</validation>
<Xcollection>
<SQL_stmt>
SELECT race.raceid, date(race.racetime) as racedate, race.distance, cid, clubname,
status, finishingtime, rname, r.weight AS rweight, hname, h.weight AS hweight,
birthyear FROM race, table(SELECT generate_unique() as cid, raceid, ridername,
clubname, horsename, finishingtime, status FROM contestants) AS c, rider AS r,
horse AS h WHERE race.raceid = c.raceid AND ridername = rname AND clubname
= memberclub AND clubname = ownerclub AND horsename = hname ORDER BY
raceid, cid
</SQL_stmt>
<prolog>?xml version="1.0" standalone="no"?</prolog>
<doctype>!DOCTYPE Race SYSTEM "d:\temp\race.dtd"</doctype>
<root_node>
<element_node name="Race">
 <attribute_node name="Date">
 <column name="racedate"/>
 </attribute_node>
 <attribute_node name="Distance">
 <column name="distance"/>
 </attribute_node>
 <element_node name="Contestant" multi_occurrence="YES">
 <attribute_node name="Clubname">
 <column name="clubname"/>
 </attribute_node>
 <attribute_node name="Status">
 <column name="status"/>
 </attribute_node>
 <attribute_node name="Time">
 <column name="finishingtime"/>
 </attribute_node>
 <element_node name="Rider">
 <attribute_node name="Name">
 <column name="rname"/>
 </attribute_node>
 <attribute_node name="Weight">
 <column name="rweight"/>
 </attribute_node>
 </element_node>
 <element_node name="Horse">

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 20

 <attribute_node name="Name">
 <column name="hname"/>
 </attribute_node>
 <attribute_node name="Weight">
 <column name="hweight"/>
 </attribute_node>
 <attribute_node name="Birthyear">
 <column name="birthyear"/>
 </attribute_node>
 </element_node>
 </element_node>
</element_node>
</root_node>
</Xcollection>
</DAD>

The DAD file contains information about the XML declaration and the DOCTYPE element of
the XML documents to be composed. This information is the following:

The XML document is composed according to XML version 1.0 and it is not standalone (it
is associated to a DTD file):

<prolog>?xml version="1.0" standalone="no"?</prolog>

The DOCTYPE of the XML document is Race. That means that the root element of the
XML document is an element called Race. The SYSTEM specifies that the XML document
is supposed to follow the rules in the DTD file d:\temp\race.dtd:

<doctype>!DOCTYPE Race SYSTEM "d:\temp\race.dtd"</doctype>

The file d:\temp\race.dtd does not exist yet. In chapter 4.1.4 we will create this DTD file and
we will use the XML documents composed with this DAD file.

Assuming that the DAD file has been saved as d:\temp\race1.dad we can enable an XML
collection called racecollection by submitting the following command in the Command
Window:

dxxadm enable_collection riding racecollection d:\temp\race1.dad

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 21

When the new XML collection has been enabled use the retrieve command to compose XML
documents and place them in the results table (You may want to remove the previous XML
documents from the results table first) :

retrieve riding racecollection results

The XML documents are now stored in the table results.

4.1.3 Extract XML documents into XML files
So far we have composed XML documents and stored them in a table. It can be desired to
extract these XML documents from the database and keep them as separate files. To do that
we will use the XML extender’s Content function.

Like all other functions, the Content function can be used in a SELECT statement. The
Content function has three different sets of parameters. The one that we will use is the
following:

Content(xmlobj, filename)
xmlobj is the XML document as an XMLVARCHAR.
Filename is a string with the fully qualified filename and location of the file where the XML
document will be saved.
When this function is executed it returns the filename to where the XML document was
saved.

Here is an example of how to use this function:

SELECT db2xml.Content(xmldoc, 'd:\temp\my.xml') From results

This command produces a file called d:\temp\my.xml which contains the XML document
that is stored in the xmldoc column of the results table. The problem with this command is
that it tries to save each and every XML document from the xmldoc column as a file called
d:\temp\my.xml. Consequently only the last XML document gets saved. The next figure
shows what this command returns:

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 22

An easy way to produce unique names for all the XML files saved, is to use the
generate_unique() function to produce the filename:

SELECT db2xml.Content(xmldoc, ('d:\temp\my' CONCAT HEX(generate_unique())
CONCAT '.xml')) From results

This command will produce a unique key for every row in the results table, and then
concatenate a hexadecimal representation of that unique key into the filename. The next
figure shows a result of this command:

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 23

4.1.4 Store XML documents in an XML column
In this section we will create an XML column and store in it the XML documents that we
generated before. To accomplish that we have to do the following:

1. Create a database with a table where the XML documents will be stored
2. Enable the database for XML
3. Prepare a DTD for controlling the incoming XML documents
4. Store the DTD in the DTD_REF table
5. Prepare a DAD file for the XML column
6. Enable the XML column
7. Insert XML documents into the XML column

• Start by creating a database! You will need to disconnect from the other database if you

are still connected. Use the command disconnect riding.
Here is a command that creates a database:

CREATE DATABASE myxmlcol

The database is now ready to be enabled for XML.

• Enable the database for XML by issuing the following command in the Command

Window:

dxxadm enable_db myxmlcol

• Connect to the new database and create a table for the XML documents! The table should
have a column of one of the three XML extender types (XMLVARCHAR, XMLCOLB,
XMLFILE). Here we use XMLVARCHAR.

CONNECT TO myxmlcol
CREATE TABLE xmlcol (xmldoc DB2XML.XMLVARCHAR)

Note that this table can contain many other columns. Those columns do not interfere with
the XML column.

When an XML document is inserted into the database, it has to be controlled. If there is no
control of incoming XML documents, the database will soon become corrupt. To control an
XML document we need a set of rules of what is and is not allowed. Those rules can be
defined in a DTD file.

Before defining a DTD, we must know the exact structure of the XML documents that we
want the DTD file to control (and accept). The XML documents that we want to insert into
the XML column, are the ones we created earlier from the XML data in the XML collection.
So the structure is already defined.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 24

Now let’s create a DTD file to represent that structure.

First we have a Race element. <!ELEMENT Race>

The Race element has a sub-element called
Contestant, that can occur zero or more
times (denote this with an asterisk after the
element name).

<!ELEMENT Race (Contestant*)>

The Race element has two attributes (Date
and Distance).

<!ELEMENT Race (Contestant*)>
<!ATTLIST Race
 Date CDATA #REQUIRED
 Distance CDATA #REQUIRED>

We continue with the Contestant element. <!ELEMENT Contestant>

The Contestant element has two sub-
elements called Rider and Horse, that can
occur once and only once within a
Contestant element.

<!ELEMENT Contestant (Rider, Horse)>

The Contestant element has three attributes
(Clubname, Status and Time) The first two
have to be there, the third can be missing.
Status can only be one of four predefined
values: finished, walkover, disqualified and
dropout.

<!ELEMENT Contestant (Rider, Horse)>
<!ATTLIST Contestant
 Clubname CDATA #REQUIRED
 Status (finished | walkover | disqualified

| dropout) #REQUIRED
 Time CDATA #IMPLIED>

The Rider element. The Rider element has no
content.

<!ELEMENT Rider EMPTY>

The Rider element has two attributes (Name
and Weight). Name is required, Weight is
not.

<!ELEMENT Rider EMPTY>
<!ATTLIST Rider
 Name CDATA #REQUIRED
 Weight CDATA #IMPLIED>

The Horse element. The Horse element has
no content

<!ELEMENT Horse EMPTY>

The Horse element has three attributes
(Name, Weight and Birthyear). Only Name
is required

<!ELEMENT Horse EMPTY>
<!ATTLIST Horse
 Name CDATA #REQUIRED
 Weight CDATA #IMPLIED
 Birthyear CDATA #IMPLIED>

• Put all the elements together and save the file, for example as d:\temp\Race.dtd

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 25

Here is the content of the file Race.dtd:

<!ELEMENT Race (Contestant*)>
<!ATTLIST Race
 Date CDATA #REQUIRED
 Distance CDATA #REQUIRED>
<!ELEMENT Contestant (Rider, Horse)>
<!ATTLIST Contestant
 Clubname CDATA #REQUIRED
 Status (finished | walkover | disqualified | dropout) #REQUIRED
 Time CDATA #IMPLIED>
<!ELEMENT Rider EMPTY>
<!ATTLIST Rider
 Name CDATA #REQUIRED
 Weight CDATA #IMPLIED>
<!ELEMENT Horse EMPTY>
<!ATTLIST Horse
 Name CDATA #REQUIRED
 Weight CDATA #IMPLIED
 Birthyear CDATA #IMPLIED>

Now we can insert the DTD file into the DTD_REF table (which was created when we
enabled the database for XML).

Execute the following INSERT statement, to insert the DTD file into the DTD_REF table of
the database:

INSERT INTO db2xml.DTD_REF VALUES (‘d:\temp\Race.dtd’,
db2xml.XMLClobFromFile(‘d:\temp\Race.dtd’), 0, ‘userX’, ‘userZ’, ‘userY’)

The first value specifies a name for the inserted DTD file, this is also the primary key of the
DTD_REF table. It is usual to set the fully qualified name of the file as this value.
The second value is the DTD file itself. This value has to be of XMLCLOB type, hence we
use the XML extender’s function XMLClobFromFile to import the DTD file into an
XMLCLOB.
The third value (called USAGE_COUNT) shows how many DAD files refer to this DTD file.
It has to always be set to 0 when a DTD file is first being inserted.
The rest of the parameters are optional and specify the following: AUTHOR, CREATOR,
UPDATOR.

When a DTD file has been inserted into the DTD_REF table, it can be referenced by DAD
files associated with XML columns or XML collections in the database in question.

Note that as with DAD files, if the DTD file has to be altered then it is not enough to change
the file. The row for the old DTD has to first be removed from the DTD_REF table. If the
DTD is in use then XML Column or Collection that is using it has to first be disabled. It is
always possible to see if a DTD in the DTD_REF table is in use by checking the usage_count
value for a specific DTD.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 26

We can now define the DAD file for the XML column. The DAD file will contain a reference
to the DTD file and information about the side tables. It is not important to have side tables
but we will use one side table to illustrate how this feature works. We will have a side table
with two columns: Date and Distance.

The DAD file starts, as before, with the following lines:

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">
<DAD>

Then we have an element called dtdid, where we define the DTD to be used to control
incoming XML documents:

<dtdid>d:\temp\Race.dtd</dtdid>

Then the validation element, in this case we set the validation to YES. This activates the
control of the incoming XML documents:

<validation>YES</validation>

Now we have the Xcolumn element:

<Xcolumn>

Within this element we can specify the side tables (in this case only one side table), and the
mapping between elements or attributes and the columns of the side tables. In this way the
side tables will be automatically updated every time a new XML documents is inserted. Here
is the content of the Xcolumn element:

A table element with a name attribute. That is
the name of the side table.

<table name=”race_st”>

 <column name=”Racedate”
 type=”date”
 path=”/Race/@Date”
 multi_occurrence=”NO”/>

A column element for each column of the side
table. The name attribute indicates the name of
the column, the type attribute indicates the data-
type of the column, the path attribute indicates
where in the XML document’s structure to get
the value from, the multi_occurrence attribute
indicates whether or not the specified path can
appear many times within an XML document.
(Note that an empty element can be closed with
a “/” in the end of the opening tag)

 <column name=”Racedistance”
 type=”integer”
 path=”/Race/@Distance”
 multi_occurrence=”NO”/>

And the closing tag of the table element. </table>

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 27

And of course the closing tags of the Xcolumn element and the DAD element:

</Xcolumn>
</DAD>

• Now save the DAD file (for example d:\temp\racecolumn.dad)!

• Enable the XML column! Here is the command:

dxxadm enable_column myxmlcol xmlcol xmldoc d:\temp\racecolumn.dad

where myxmlcol is the database name, xmlcol is the name of the table and xmldoc is the
name of the column in the table.

Now that the XML column has been enabled, we can insert XML documents into it. To insert
an XML document we can execute an INSERT statement. When inserting an XML document
into a column of a table, we must always think of the data type of the column. The column, to
which we will insert the XML documents is of the following type:
DB2XML.XMLVARCHAR. Fortunately, there is a set of functions for transforming XML
documents to and from all the different XML data types. One of those functions is this:
DB2XML.XMLVarcharFromFile(). This function takes one argument: the full filename as a
string and returns the content of that file (the XML document) as an
DB2XML.XMLVARCHAR. Here is an example of an INSERT statement:

INSERT INTO xmlcol (xmldoc) VALUES
(DB2XML.XMLVarcharFromFile(‘d:\temp\my20000603132654013484000000.xml’))

The file d:\temp\my20000603132654013484000000.xml is just one of the files we
generated before (see chapter 4.1.3). The filenames are random, so the files that you have,
have different filenames from the filenames that appear in chapter 4.1.3.

When the XML document has been inserted into the database, the side tables have also been
updated. In our case there should be one new record in the race_st table.

If the XML document does not comply with the DTD file, specified in the DAD file, then it
will be rejected. That can easily be tested; try to insert an XML document with the wrong type
of elements or attributes.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 28

Here is what happened when a faulty XML document was inserted into the XML column:

An XML document is rejected when:

• The element structure is not as specified in the DTD file
• The attributes of the elements are not following the rules of the DTD file
• The SYSTEM of the XML document (specified in the DOCTYPE element) is not the

same as the one in the DAD file. Both should point to the same DTD file.

On the other hand an XML document that is defined as standalone (in the XML declaration)
can be accepted if it does not break any of the rules above.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 29

4.1.5 Run queries against the XML column
After having inserted a number of XML documents into the XML column, we can run a few
queries against the XML column and its side tables.
Data on the side tables can be accessed much faster than data in the XML column. When a
query requires data that have been stored in side tables then it is better to run the query against
the side tables and not the XML column. The next example illustrates this situation:

Run a query that returns the date and the distance of all the races ordered by date!

Both the date and the distance are columns in the race_st side table. The following SQL
statement returns the date and distance of all the races ordered by date:

SELECT racedate, racedistance FROM race_st ORDER BY racedate

Here is a possible result:

An other way to retrieve the date and distance of all the races is to extract them directly from
the XML column. Here is an SQL statement that does that:

SELECT db2xml.extractdate(xmldoc, '/Race/@Date') AS racedate,
db2xml.extractInteger(xmldoc, '/Race/@Distance') AS racedistance
FROM xmlcol ORDER BY racedate

Db2xml.extractDate() and db2xml.extractInteger() are two of the functions that the XML
extender provides for extracting data from XML documents. Other functions are
db2xml.extractVarchar(), db2xml.extractLong(), db2xml.extractChar(), etc. All these
functions have a plural version: db2xml.extractIntegers() etc. All the functions take two
parameters, the first one is the XML document and the second one is the location path of the
wanted element or attribute in the specified XML document. The location path is a sequence

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 30

of element names separated by a single slash (/). An attribute is denoted with an at sign (@)
followed by the name of the attribute.

Here is the result of the SQL statement:

The results of both SQL statements are the same, but the execution time is much longer for
the second statement.

When the requested data exist only in the XML column the db2xml.extract functions have to
be used. If the value that we want to extract appears more than once in an XML document
then we have to use the plural version of the db2xml.extract functions. Those functions
cannot be used directly in a SELECT statement, because they return more than one value.
Instead they have to be used in the FROM clause of the SELECT statement combined with
the table() function. Here is an example that uses the plural function
db2xml.extractVarchars():

List all the Riders (name), sorted and without any duplicates!

Here is an SQL statement that returns just that:

SELECT DISTINCT substr(t.returnedvarchar,1,20) as Name FROM xmlcol,
table(db2xml.extractVarchars(xmldoc, '/Race/Contestant/Rider/@Name')) AS t
order by name

In the FROM clause we have the table where the XML documents are (xmlcol) and within a
table() function we call the db2xml.extractVarchars() function. In this way the returned
values are transformed into a table called t. The column name for the returned values is

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 31

returnedvarchar. Similarly the db2xml.extractReals() function returns a column called
returnedreal.
The substr() function returns a string 20 characters long, the returnedvarchar is by default
4000 characters long. To be able to use the DISTINCT function and the ORDER BY clause,
the length of each column cannot exceed 255 characters.

Here is the result:

All the db2xml.extract functions can also be used in the WHERE clause. We can easily
modify the previous query to only show the riders that participated in races with distance
equal to 1500. This is the new SQL statement:

SELECT DISTINCT substr(t.returnedvarchar,1,20) as Name FROM xmlcol,
table(db2xml.extractVarchars(xmldoc, '/Race/Contestant/Rider/@Name')) AS t
WHERE db2xml.extractInteger(xmldoc, '/Race/@Distance') = 1500
order by name

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 32

Here is the result:

A very useful function is the db2xml.extractCLOBs() function. This function can be used to
extract parts of an XML document as new XML documents. To illustrate how this function
works we will try to extract each Contestant element as a new XML document. Here is the
SQL statement:

SELECT t.returnedCLOB
FROM xmlcol, table(db2xml.extractCLOBs(xmldoc, '/Race/Contestant')) AS t

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 33

And here is the result:

Now lets try to combine this technique with the rest of the functions. Here is a possible
demand:

List all the horses that participated in a race on 2000-05-23. List their names, year of birth
and weight. Order them according to age.

To solve this problem, we need to extract one contestant at a time and then extract the horse’s
information from the contestant. Here is an SQL statement that does exactly that:

SELECT DISTINCT
 substr(db2xml.extractVarchar(db2xml.XMLCLOB(t.returnedCLOB),
'/Contestant/Horse/@Name'),1,20) AS Name,
 db2xml.extractInteger(db2xml.XMLCLOB(t.returnedCLOB),
'/Contestant/Horse/@Weight') AS Weight,
 db2xml.extractInteger(db2xml.XMLCLOB(t.returnedCLOB),
'/Contestant/Horse/@Birthyear') AS Birthyear
FROM xmlcol, table(db2xml.extractCLOBs(xmldoc, '/Race/Contestant')) AS t
WHERE db2xml.extractDate(xmldoc, '/Race/@Date') = '2000-05-23'
ORDER BY Birthyear desc

The db2xml.extractCLOBs() function returns a CLOB value under the name
returnedCLOB. To use this returnedCLOB in another db2xml.extract function, we have to
transform it to one of the three XML datatypes (XMLVARCHAR, XMLCLOB, XMLFILE).
The db2xml.XMLCLOB() function does exactly that: It takes a normal CLOB as an argument
and returns it as an XMLCLOB.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 34

Here is the result:

Here is an even more complex example:

For every contestant that finished a race of distance 1000, list the rider's name and weight,
the horse's name and birth year, as well as the club name! Order the results by Club and
weight of rider (heaviest first)!

SELECT DISTINCT Clubname,
substr(db2xml.extractvarchar(riderxml, '/Rider/@Name'),1,20) AS RiderName,
db2xml.extractinteger(riderxml, '/Rider/@Weight') AS RiderWeight,
substr(db2xml.extractvarchar(horsexml, '/Horse/@Name'),1,20) AS HorseName,
db2xml.extractinteger(horsexml, '/Horse/@Birthyear') AS HorseBirthYear
FROM (SELECT db2xml.XMLCLOB(tr.returnedCLOB) AS riderxml,
 db2xml.XMLCLOB(th.returnedCLOB) AS horsexml,
 substr(db2xml.extractvarchar(contestantxml, '/Contestant/@Clubname'),1,30) AS Clubname
 FROM (SELECT db2xml.XMLCLOB(t.returnedCLOB) AS contestantxml
 FROM xmlcol, table(db2xml.extractCLOBs(xmldoc, '/Race/Contestant')) AS t
 WHERE db2xml.extractinteger(xmldoc, '/Race/@Distance') = 1000) as contestant,
 table(db2xml.extractCLOBs(contestantxml, '/Contestant/Rider')) AS tr,
 table(db2xml.extractCLOBs(contestantxml, '/Contestant/Horse')) AS th
 WHERE db2xml.extractvarchar(contestantxml, '/Contestant/@Status') = 'finished') AS horserider
ORDER BY Clubname, RiderWeight desc

This works as follows:
1. Start with table xmlcol
2. extract CLOBs setting Contestant as root in a temporary table called t
3. extract an Integer corresponding to path /Race/@Distance
4. compare it to 1000
5. Select the CLOBs from t and call them contestantxml
6. Call the entire result contestant
7. Second level start with contestant as input table in FROM clause

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 35

8. extract CLOBs from column contestantxml setting Rider as root in a temporary table
called tr

9. extract CLOBs from column contestantxml setting Horse as root in a temporary table
called th

10. extract varchar for path /Contestant/@Status
11. compare it to 'finished'
12. Select the CLOBs from tr and call them riderxml
13. Select the CLOBs from th and call them horsexml
14. extract varchar for path /Contestant/@Clubname and cut it down to 30 characters
15. select the 30 character long varchar as Clubname
16. Call the entire result horserider
17. third level starts with horserider as source table
18. extract clubname from horserider
19. extract varchar for path /Rider/@Name and cut it down to 20 characters
20. call it RiderName
21. extract integer for path /Rider/@Weight
22. call it RiderName
23. extract varchar for path /Horse/@Name and cut it down to 20 characters
24. call it HorseName
25. extract integer for path /Horse/@Birthyear
26. call it HorseBirthYear
27. sort results on ClubName and RiderWeight
28. remove duplicates (they would occur if the same rider with the same horse had finished a

race of the right distance!)

Alternatively we could add a GROUP BY clause and count the amount of times the same
rider with the same horse has finished a race of the given distance. To do this we need to add
one more level to the SQL statement:

SELECT Clubname, RiderName, RiderWeight, HorseName, HorseBirthYear, Count(*) as Times
FROM

(SELECT Clubname,
substr(db2xml.extractvarchar(riderxml, '/Rider/@Name'),1,20) AS RiderName,
db2xml.extractinteger(riderxml, '/Rider/@Weight') AS RiderWeight,
substr(db2xml.extractvarchar(horsexml, '/Horse/@Name'),1,20) AS HorseName,
db2xml.extractinteger(horsexml, '/Horse/@Birthyear') AS HorseBirthYear
FROM (SELECT db2xml.XMLCLOB(tr.returnedCLOB) AS riderxml,
 db2xml.XMLCLOB(th.returnedCLOB) AS horsexml,
 substr(db2xml.extractvarchar(contestantxml, '/Contestant/@Clubname'),1,30) AS Clubname
 FROM (SELECT db2xml.XMLCLOB(t.returnedCLOB) AS contestantxml
 FROM xmlcol, table(db2xml.extractCLOBs(xmldoc, '/Race/Contestant')) AS t
 WHERE db2xml.extractinteger(xmldoc, '/Race/@Distance') = 1000) as contestant,
 table(db2xml.extractCLOBs(contestantxml, '/Contestant/Rider')) AS tr,
 table(db2xml.extractCLOBs(contestantxml, '/Contestant/Horse')) AS th
 WHERE db2xml.extractvarchar(contestantxml, '/Contestant/@Status') = 'finished') AS horserider
) AS temp

GROUP BY Clubname, RiderName, RiderWeight, HorseName, HorseBirthYear
ORDER BY Clubname, RiderWeight desc

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 36

And here is the result:

4.2 More to do
Now that we have gone through DB2’s facilities for XML, it is time to test what you have
learned. In this section you will find a description of an XML structure and a few queries. The
new XML structure is based on the same XML collection as before. What you have to do is
this:

• Create XML documents according to the new XML structure (from the XML data stored

in the XML collection)!
• Create a new XML column and store the new XML documents in it! (Don’t forget to

validate the XML documents.)
• Write SQL statements that solve the given queries! The SQL statements should extract the

data from the XML documents in the XML column and not from possible side tables.

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 37

Here is the XML structure:

Club

Rider

Race

TelephoneHomepage

Name Weight Email

Date Distance Time

Horse

Name Birthyear Weight

Attribute

Element

Status

Name

Figure 6 XML structure to be implemented
And here are a few queries:

• List all the clubs (name and telephone) in alphabetical order!
• List all the riders that are members of the club “Riders Club”!
• List the date, distance and status of all the races that Robert Frankel participates in!
• List all the riders (name, email), their club (name) and the amount of races that they have

finished!
• For every rider of the club "Horseriders" list the name of the rider and the amount of

different horses the rider rides!

Institutionen för Data- DB2 & XML Laboration v. 2.0 Stockholm
och Systemvetenskap IS4 ht2001 August 2007
SU/KTH Modeller och språk för
nikos dimitrakas objekt- och relationsdatabaser

 38

5 Completed Lab requirements
All the exercises in chapter 4 are compulsory. For the exercises in section 4.2 you have to
send in electronically (use the conference called “OBJDB Inluppar” in Firstclass) the
following documents:

1. DAD file for the composition of XML documents from the XMLcollection
2. DAD file for the XML column
3. DTD file for the XML documents.
4. SQL statements for all the queries, with execution results.

The results of the exercises should also be presented to nikos in a short interactive
session per group. All the members of the group should be present.

The deadline for this lab is the 12th of October 2001.

6 Internet Resources
XML & DTD Tutorials

http://L238.dsv.su.se/tutorial
http://www.w3schools.com/xml/default.asp
http://www.spiderpro.com/bu/buxmlm001.html

DB2 XML extender

http://www-4.ibm.com/software/data/db2/extenders/xmlext/

7 Epilogue
When all this is done, you should have quite a good understanding of how to use DB2 to
manage XML documents and XML data.

I hope you have enjoyed this compendium. Please give me feedback!

The Author

nikos dimitrakas

