DEPARTMENT OF COMPUTER
AND SYSTEMS SCIENCES
SU/KTH

DB2 & XML LAB

v. 3.3

I154/2i1242/2i4042

Models and languages for object,
relational and web databases

Spring Term 2004

http://L.238.dsv.su.se/courses/1S4/

ot dimitral

2

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Table of contents

I LT oo [Tod o] o USSPV 3
N (0] 0 T=T o F= Lo [OOSR PP UPROURO 3
1.2 THE ENVIFONIMENTiitiiie ittt sttt ettt st e bt st e e s b e sbeereebesbe e e e ebeaneeseesbesreenneas 3
1.3 Completed Lab REQUIFEMENTScoiiiiiiieee e 3

2 XML & DB2..... ettt 4
2.1 XIMIL b h bt E e bbbt b e be e bbe e nnbeeenes 4

2.1 1 XML EXPIANGLION ...ttt bbb bbbt b et bttt b et e e et e s e enebe et b e 4
2.1.2 DTD EXPIANALION.eiiiiiite ettt ettt b ettt e bbb e b e et b e b e aees e e e e benbe b neas 5
Y I T T] = 6
2.2.1 XIMIL COHBCLION ..ttt b ettt sb et b ettt b ekt sttt sb et be et e et e ene e 6
2.2.2 XIMIL COTUMIN 1.ttt bbbt bt bt bttt st b e bttt eb et e be et e ebenbe e 6

S DALADASES ...ttt bbb R bbb Rt b bbb e bt e ne s 7
20 = 1o T] TSSO 7
K o [T <0 o [o PRSPPSO 10

4 Compulsory Exercises and ASSIGNMENTSc.uiiiiiirrieriene e 10
4.1 XML SPECITIC FUNCTIONS ...ttt sttt be e e eas 10

AL L PAEN .ot b bbb £ Rt b e Rt b e bt b ekt bt b e b e be b e ebe b e 11
4.1.2 EXEFACE FUNCLIONS ...ttt ettt b et b et b et sb et sbe et e nbe e 12
A.1.3UPAAEE TUNCLION ..ttt etttk b bbbtk b et eb e et sbe et e ene e 14
4.2 Queries against XML column exXplaiNed..........cccoceiviiiiiiiieie s 14
4.2.7 RELIEVING TALA.....eveeteeeeiie ittt bttt b et b e bbbt et et et sbeebe e bt e bt e b e bt ebe e e e besaeebeneas 15
Y VYT o101 P L Ta o o =L SRS 33
e AN [0] =T (SR 34

5 VOIUNTAIY EXEITISESvveivieiieciie ettt ettt te et s e ste e saessa e s teebeaneesreesteeneesreenee e 35
5.1 Create @ datADaSEcc.oiveiiiiiiecie ettt e reeneenre s 35
5.2 Enable the database for XML (as an XML collection) and compose XML documents 37
5.3 Extract XML documents into XML fileS ..ot 49
5.4 Store XML documents in an XML COIUMINc.cooviiiiiiiie i 51

B INTEINET RESOUICES. ...ttt ettt ettt ettt ettt e bt e st e e b e e s be e e bt e e beeebeessneesbeesnbeenneens 58

=11 o[1SS 59

Table of figures

FIgure 1 XML @nd DTD ...oooiiiieiieiiee ettt ettt st et 4

Figure 2 Main components of XML IN DB2..........ccooiiiiiiiiiiieseeee s 7

Figure 3 XML structure for the Book XML fileS........c.ccceiiiiiiieiiie e 8

Figure 4 Database model of horse-riding database.............cccevviieriiere i 10

Figure 5 Structure of elements and attributes for the XML documents.............c.ccccceveieennnns 38

Figure 6 Entities of the XIML SIFUCTUIEcoiiiiiiieiee et 44

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

1 Introduction

This compendium contains the following:

An introduction to XML

An introduction to DB2’s facilities for handling XML data

Compulsory exercises on using DB2 for querying and manipulating XML data
Voluntary exercises on using DB2 to transform relational data to XML data

It is strongly recommended that you read through the entire compendium (except from
chapter 5) before starting to work with the exercises.
1.1 Homepage

Information about this compendium can be found here:
http://L.238.dsv.su.se/courses/IS4

The following can be found at this address:

e FAQ - Here there is a list of corrections and explanations that come after the course start.

e Links - Internet resources that can be helpful when working with the compendium.

e Files - The newest version of the compendium and all the files needed to complete the
exercises in the compendium (not the solutions of assignments).

1.2 The environment
The following facilities will be used:
e |BM DB2 Universal Database version 7.2, with XML extender
= DB2 Command Window
= DB2 Command Center
= DB2 Information Center

= Editor (of your choice)
= Web browser

More information on DB2 and its facilities can be found in the compendium “Introduction to
IBM DB2 for MS Windows 2000 Professional”.

1.3 Completed Lab Requirements

All the exercises in chapter 4 are compulsory. For the assignments in section 4.3 you
have to send in electronically (use the conference called “MLDB Assignments” in
Firstclass) the following:

1. SQL statements for all the queries.
2. Execution results for the first 6 queries.

Don't forget to mention the group number and the names of all the group participants.

The deadline for this lab is the 26th of March 2004.

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

2 XML & DB2

This chapter introduces XML and DB2’s facilities for working with XML. This is not a
complete reference of either XML or DB2’s XML extender. The following sections only
present the aspects of XML and DB2 that are needed to complete the exercises that follow.

2.1 XML

XML (eXtensible Markup Language) is a language with many uses. One of them is to
transport data between different systems.

XML consists of two languages, one language for the actual XML documents and one
language for specifying how the XML documents® should be structured, called DTD?
(Document Type Definition). Not all XML documents are associated to DTDs. Here is an
example of an XML document and its DTD:

XML Document (saved in a file called “book.xml”) DTD file “book.dtd”)
<?2xml version="1.0"?> <?xml encoding="US-ASCII"?>)
<IDOCTYPE book SYSTEM "c:\dxx\samples\dtd.book.dtd"> <IELEMENT book (author* chapter*,price)>

<IELEMENT author (#PCDATA)>

<book>
s man " " <IELEMENT chapter (section*, footnote*)>
<chapter id="1" date="07/01/1997"> . SIATTLIST chapt’;r id(a2 #REQUIR%ED
<section>This is a section in Chapter One.</section> date CDATA #IMPLIED>
</chapter> <IELEMENT price (#PCDATA)>
<chapter id="2" date="01/02/1997"> <IATTLIST price date CDATA #IMPLIED
<section>This is a section in Chapter Two.</section> time CDATA #IMPLIED
<footnote>A footnote in Chapter Two is here.</footnote> timestamp CDATA #IMPLIED>
</chapter> <IELEMENT section (#PCDATA)>
<price date="12/22/1998" time="11.12.13" timestamp="1998-12-22-11.12.13"> - E-EMENT footnote (#PCDATA)>
38.281
</price>
</book>

@® Both languages are case sensitive!

~A D An XML document can refer to a DTD file.
A DTD file can be associated with many XML
documents. When an XML document refers to a
BlfoDr XML DTD file then the XML documents content is
| »| document supposed to follow the rules defined in the DTD
document flle
a__

Figure 1 XML and DTD

2.1.1 XML Explanation
Elements:

In the previous example chapter is an element. Everything from the <chapter> to the
</chapter> constitutes an element chapter.

! The term XML document refers to a file with the extension .xml.
2 DTD is the older language for defining XML structures. Another “newer” language is XMLSchema,
which is somewhat more powerful than DTD.

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Every XML document must have a root element, an element that has its start tag in the
beginning of the XML document and its end tag at the end of the XML document. This
element may appear only once in the XML document.
Attributes:
The element chapter has an attribute id and an attribute date. All attributes of an element
appear within the starting tag of the element. Attributes have a value that is within double
quotation marks (*).
Structure:
<element attributel="value” attribute2="value2”>

element content
</element>

The element content can be empty, text or other elements.
If the element content is empty then the element can look like this:

<element attributel="value” attribute2="value2”/>
If an end tag is used then no character are allowed between the starting tag and the end tag:
<element attributel="value” attribute2="value2”></element>

XML declaration & DOCTYPE element

The first two lines of any XML document are always the XML declaration & the DOCTYPE
element:

XML declaration:

<?xml version="1.0" standalone="no"?>

In the XML declaration we define the XML version and whether there is a DTD file with
rules for the XML structure or not

DOCTYPE element:

<IDOCTYPE Book SYSTEM "c:\dtd\book.dtd">

The DOCTYPE points out the root element of the XML document and the SYSTEM points
out the DTD file for the XML document.

2.1.2 DTD Explanation
The DTD file contains rules to be followed when constructing an XML document.

It defines the elements that can appear in the XML document:
<IELEMENT element-name>

It defines the elements that can appear within an element:
<IELEMENT element-name (element2-name)>

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

or the type of the element content:
<IELEMENT element-name (#PCDATA)>

It also defines the attributes that an element can have, with the appropriate rules (the type of
the attribute, whether it has to be there or not, a default value, etc.) :
<IATTLIST element-name

attributel-name CDATA #REQUIRED

attribute2-name CDATA #IMPLIED>

For more help on how to construct an XML document visit one of the following tutorial sites
(tutorials for both XML and DTD):

e http://www.w3schools.com/xml/default.asp
e http://www.w3schools.com/dtd/default.asp
e http://www.spiderpro.com/bu/buxmIm001.html

2.2 XML in DB2

DB?2 provides two ways for working with XML documents and XML data®:
e XML collection
e XML column

2.2.1 XML collection

When XML data is stored in a relational database, then this database is called an XML
collection. DB2 XML extender provides functions for decomposing XML documents into
relational data to be stored in the XML collection, and functions for composing XML
documents from XML data stored in the XML collection.

Since XML documents are based on hierarchical models and relational databases are based on
relational models, it is important to have a mapping between the two models. This mapping
can then be used for transformations in both directions. The mapping is defined in DAD
(Document Access Definition) files. A DAD file is an XML document that has the extension
.dad and follows the rules defined in the file dad.dtd®. The DAD file is then used when
enabling the XML collection. At that time DB2 verifies that the tables referred in the DAD
file exist, otherwise they are created.

In chapter 5 there is a more detailed description of how to do all this in practice.

2.2.2 XML column

XML column is a different approach than XML collection. XML column is an XML enabled
database that contains intact XML documents. Those XML documents are stored in a certain
table that has a column of one of these three types: XMLCLOB, XMLVARCHAR, XMLFile.
That column has to be enabled and associated with a DAD file. In the DAD file there can be a
reference to a DTD file for validating the incoming XML documents (XML documents that

¥ With the term XML data we refer to the contents of XML documents, even when the data has been
transformed. Data that is going to become the content of an XML document can also be referred to as
XML data

* The file dad.dtd can be found in the following directory:

c:\dxx\dtd on all the machines that have the DB2 XML extender installed.

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

we insert to the database), and rules for creating side tables® and storing XML data in them.
The DTD file must have been registered in the DTD_REF table that is created when a
database is being enabled for XML.

There are more details about this in chapter 5. In chapter 4 we will also use an XML column.
All the XML components are stored
in the database. The XML documents,
DTD files and DAD files are stored in
XML | p7 rules for user tables, while the DAD.DTD file

document XML

T is stored in the database manager.

The database can of course contain
other non XML specific components
too. Those components are not
represented in Figure 2.

Database
DAD.DTD

rules for
DAD files

Figure 2 Main components of XML in DB2

3 Databases

As mentioned earlier this compendium contains some compulsory and some voluntary
exercises/assignments. For the compulsory part (described in chapter 4) we will use a
database about books. For the voluntary part (described in chapter 5) we will use a database
about horse-riding.

3.1 Books

This database is of the type XML column described in section 2.2.2. There are a number of
commands that need to be executed in a certain sequence in order to create this database. We
also need the XML data (stored as XML files). 15 XML files, 1 DTD file, 1 DAD file and a
script for creating and populating the database can be found at the following network address:

\DB-SRV-1\StudKursInfo\lS4 vi2004\DB2-XML\Books

So what do all the files do and what do the commands in the script do?

15 XML files (book01.xml — book15.xml)
These files contain the actual data about the books. More precisely they contain
the title, the genre, the original language, data about the authors, data on each
edition and each translation and the price. The following figure shows the
structure of the XML files.

® A side table is a table that contains data from the XML document. The side tables are used to improve
performance when searching through the XML documents. Usually, only some of the XML data is placed
in the side tables — the data that is used most frequently when searching.

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Original
anguage

SSSHN OB

Language
Element

Figure 3 XML structure for the Book XML files

1 DTD file (Book.dtd)
This file contains the rules for the XML structure described in Figure 3.

1 DAD file (bookcolumn.dad)
This file contains the information required by DB2 for creating the XML
column where the XML files will be stored. It also provides information about
the DTD to be used for validating the inserted XML files.

1 script (bookxmldb.bat)
This script contains all the commands necessary for creating and populating the
database (also called “XML column”). In detail the commands included in the
script are:

1. DB2 CREATE DATABASE book on D:
This command creates a database called book on drive D.

2. Dxxadm enable db book
This command tells DB2 that the database book will be used for XML data.
DB2 creates some infrastructure for the XML data. This infrastructure

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

includes some system tables and some XML specific data-types.

3. DB2 CONNECT TO book
Creates a connection to the database book that was just created.

4. DB2 CREATE TABLE xmicol (xmldoc DB2XML.XMLVARCHAR)
Create a new table called xmlcol with one column called xmldoc.

5. DB2 INSERT INTO db2xml.DTD_REF VALUES
(‘D:\xmltemp\Book.dtd’,
db2xml. XMLClobFromFile(‘D:\xmltemp\Book.dtd’), O, ‘userX’, ‘userY’,
‘userzZ’)
This command inserts the DTD file into the database, in the system table
DTD_REF. This DTD file will be later used for controlling all the incoming
XML files.

6. Dxxadm enable_column book xmlcol xmldoc
d:\xmltemp\bookcolumn.dad
This command tells DB2 which column of what table will be used for
inserting the XML files. It also specifies (in the DAD file) the DTD to be
used for checking the incoming XML files.

7. DB2 INSERT INTO xmlcol (xmldoc) VALUES
(DB2XML.XMLVarcharFromFile(‘d:\xmltemp\book01.xml’))
This is the first of 15 commands that insert the XML files into the database.

8. DB2 DISCONNECT book
Finally the scripts disconnects from the database.

In order to run the script you will need to first copy all the files from the directory books into
d:\xmltemp (if this directory doesn’t exist you have to create it). To actually run the script you
will need a DB2 Command Window. Go to d:\xmltemp (use the commands cd d:\xmltemp
and d:). Run the script by using the command bookxmldb.

C:SQLLIB-BIN>cd d:=~xmltemp
C:~3QLLIB~BIN>d:
D:sxmltemprhookxmldb_

The script may take a few minutes to complete. When it has finished (the prompt has
returned), the database is ready.

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

3.2 Horse-riding

This database is only necessary for the voluntary exercises in chapter 5.

This database consists of five tables. The tables are connected with foreign keys as shown in
Figure 4.

RNAME
WEIGHT
MEVBERCLUB
EMAIL

TRACK
DISTAMCE
RACETIME

OWNERCLLB
HNAME
WEIGHT
COLOR,

SEX
BIRTHYEAR

Figure 4 Database model of horse-riding database

Scripts for creating and populating the database can be found here:
¢ \\DB-SRV-1\StudKursinfo\lS4 vt2004\DB2-XML\Horse-riding

Simply run the two scripts (first the riding.tables.script and then the riding.insert.script) from
the DB2 Command Center!

4 Compulsory Exercises and Assignments

This chapter contains a number of exercises that are compulsory for completing the lab. For
these exercises we will use the XML column that we created in section 3.1. In the section that
follows you will find a description of some functions that we will use for querying and
manipulating data in the XML column. After that we will go through a few queries that use
these functions (section 4.2). Finally, in section 4.3 you will be given some questions to solve.

4.1 XML specific functions

In this section we will look at the most common functions that DB2 provides for querying and
manipulating data in an XML column. The XML column consists of XML documents stored
in a column of a relational table. So, to extract a specific part of the XML documents we need
to specify where in the XML structure the desired data is located. We call this the path (also
known as the location path).

There are two groups of functions:

1. Extract functions that are used to retrieve values from XML documents
The are 20 different extract functions, grouped in two groups. We will look at some
functions from each group. The only difference between the functions of each group is the
data type they return (there are 10 data types). The one group of functions returns atomic
values, the other returns multiple values.

10

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

2. The update function, which is used for changing parts of XML documents®.
This function can be used to alter attribute and element values of an XML document and
returns the altered version of the XML document.

The path is an important parameter for both the extract functions and the update function.
All these function "belong" to the DB2XML schema. This means that when using the
functions we must always qualify them with the schema name (we will see how this is done
later). Before we look at the functions, we will take a quick look at the path and its syntax.

4.1.1 Path
A path can have the following form’:

/element/element/@attribute

There may be one or more elements and there can be an attribute at the end (we denote that it
is an attribute with the at-sign (@). For the structure of the Book XML documents the
following are valid paths:

/Book/@Title

/Book/Author/@Name

/Book/Edition
/Book/Edition/Translation/@Language
/Book

This kind of paths is in most cases sufficient. Sometimes, on the other hand it may be
necessary (or just quicker) to use the advanced path syntax. This syntax requires the following
extras:

e Filtering (only attribute values)
For example the following path finds only Names of Authors from Austria:
/Book/Author[@Country="Austria"]//@Name

e Use of wildcards
The following example finds an attribute Year at any sub-element (denoted by a *) of the
element Book
/Book/*/@Year

e Support for recursion
This is supported according to the documentation, but not by the actual DB2.

These can of course be combined in creating more complex paths. Here is an example tat
represents the price on any English book from year 2002 that has been translated into
Swedish:

® This function can also be used to delete a part of an XML document. If you wish to delete the entire
XML document, then you can simply delete the row where the XML document is stored (with a standard
SQL DELETE statement).

" This is actually the syntax of the simple location path. We will see later that there is an advanced version
of the path syntax.

11

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

/Book[@OriginalLanguage="English"]/Edition[Year="2002"]/*[Language="Swedish"]/
@Price

More information on the path syntax and use can be found in the "XML Extender
Administration and Programming” document (pages 51-52) that can be found at the following
addresses:

e \\Db-srv-1\StudKursInfo\lS4 vt2004\DB2-XML\XML Extender Administration and
Programming.db2sxe70.pdf
o ftp://ftp.software.ibm.com/ps/products/db2/info/vr7/pdf/letter/db2sxe70.pdf

4.1.2 Extract functions

As mentioned earlier there are two groups of extract functions. They all follow the same
syntax and take the following two parameters:

1. XML document This is the column name where the XML document is stored
2. Path This is the XML path that will be extracted

The first group contains 10 functions for extracting atomic values from an XML document.
The functions are:

extractinteger() It returns an integer value of the extracted path.
extractSmallint() It returns a smallint value of the extracted path.
extractDouble() It returns a double value of the extracted path.
extractReal() It returns a real value of the extracted path.
extractChar() It returns a char value of the extracted path.
extractVarchar() It returns a varchar value of the extracted path.
extractDate() It returns a date value of the extracted path.
extractTime() It returns a time value of the extracted path.

extractTimestamp() It returns a timestamp value of the extracted path.

extractCLOB() It creates a new XML document that has as its root element the last
element that appears in the path parameter. The new XML
document is returned as a CLOB. The path sent to this method
cannot have an attribute at the end.

The second group contains 10 functions for extracting multiple values from an XML
document. This means that the same path can appear more than once in the XML documents.
In the XML structure for the Book XML documents the following are examples of paths that
may have multiple values:

12

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

/Book/Author/@Name

/Book/Edition/Translation

/Book/Edition/@Price

The functions are:

Extractintegers() It returns integer values of the extracted path.
ExtractSmallints() It returns smallint values of the extracted path.
ExtractDoubles() It returns double values of the extracted path.
ExtractReals() It returns real values of the extracted path.
ExtractChars() It returns char values of the extracted path.
ExtractVarchars() It returns varchar values of the extracted path.
ExtractDates() It returns date values of the extracted path.
ExtractTimes() It returns time values of the extracted path.

ExtractTimestamps() It returns timestamp values of the extracted path.

ExtractCLOBSs() It creates new XML documents that has as their root element the
last element that appears in the path parameter. The new XML
documents are returned as CLOBs. The path sent to this method
cannot have an attribute at the end.

These functions are most useful together with the table function. The table function takes

one parameter and makes a table out of it. The following example makes a table of all author

names in the XML document:

table(extractVarchars(xmldoc, '/Book/Author/@Name")

This would of course need to be in a context where xmldoc is defined.

When using one the extract functions with the table function, then a table with one column is

created. This column is named differently depending on the extract function used. The

column is always named according to the following convention:

“returned” + data type

So in the example above the column of the created table would be named returnedVarchar.

All the 20 functions can at times return warnings and errors. These can depend on many
reasons. The most common are:

13

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

e A path was not found
e A value of a path was incompatible with the type to be extracted
e A path appeared more than once (when using the first group of functions).

The full description of the functions and their associated error and warning codes can be
found in the "XML Extender Administration and Programming™ document that can be found
at the following addresses:

e \\Db-srv-1\StudKursinfo\lIS4 vt2004\DB2-XML\XML Extender Administration and
Programming.db2sxe70.pdf
o ftp://ftp.software.ibm.com/ps/products/db2/info/vr7/pdf/letter/db2sxe70.pdf

4.1.3 Update function

The update function receives three parameters and returns an XML document. The update
function works with one XML document at a time. The three parameters are:

1. XML document The column name where the XML document is stored
2. Path This is the path within the XML document that will be updated
3. New value This is the value that the element or attribute at the defined path

will be updated to.

The update function does not affect directly the XML documents stored in the XML column.
It merely reads them and creates copies of them. Those copies must replace the original XML
documents in the XML column if the changes are to be saved. That has to be done with a
standard SQL UPDATE statement. We will see examples of that in section 4.2.2.

It is important to know that the update function will update all the occurrences of the defined
path to the new value. The following example would change the country of all the authors to
"India":

Update(xmldoc, '/Book/Author/@Country’, 'India’)

This would again need to be in a context where xmldoc is defined.

4.2 Queries against XML column explained

All the functions mentioned in the previous section can be used in SQL statements. In the
sections that follow we will look at some examples that require the use of extract and update
functions.

All the commands in this section can be executed in the DB2 Command Center. You can use
either the script mode or the interactive mode. Don't forget that in script mode a command
must be written in one line. If you use the interactive mode it is recommended that you
change the following in the DB2 Command Center options (in the menu Command Center >
Options...):

Check the Verbose (echo command text to output)
Uncheck the Automatically display query results on the query results page

14

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

B Command Center Options -0 x|

History| Execution Results | Access Plan |

[+ Verhose (echo command text to output)

[Display SQLCA data

[+ Display SQL staternent warning messages
[Display SALCODE

[Digplay SALSTATE

[Pipe output ta file

[Automatically display query results on the guery results page

Size of result fields a0 ;‘ kilobytes

Cancel Help

A collection of all the SQL statements from the following sections exists at:

\\Db-srv-1\StudKursinfo\IS4 vt2004\DB2-XML\SQL commands.txt

4.2.1 Retrieving data

In this section we will look at ways to extract data from the XML documents in the XML
column. We will first look at some simple examples that only use the first group of extract
functions. Then we will look at some examples that use the second group of the extract
functions. Finally we will look at some more advanced examples that use the extractCLOBs
function to perform more complicated
queries.

Let's start with the following question:
What are the titles of all the books?

To answer this question we have to
extract the value of the attribute Title of
the element Book.

Since the title is a string value, we will
use the function extractVarchar. Here
is a simple SQL SELECT statement:

Translation l

SELECT DB2XML.extractVarchar(xmldoc,'/Book/@Title') FROM xmlcol

15

Department of Computer DB2 & XML Lab v. 3.3

And Systems Sciences 1S4/2i1242/2i4042 spring 2004
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Stockholm
August 2007

» Run this SQL statement in the DB2 Command Center! (You will first need to connect to
the database book. You do that with the command connect to book.)

If you ran this from the interactive mode then you should see the following result:

B Command Center

=10 x|
Command Center Intaractive Edit Toals Help m-ﬂ
J - ! = I
% D OBRP a8 B0 Bal @
\nteract\vel Script] Query Resutts| Access Plan|

Datahase connection

[LocaL- DBz - BOOK [
Cornmand histary
ISELECT DBZHML extractvarcharixmlidoc, YBooki@Title) FROM xmilcal; ;I
Command
eractéarcharimidoc YBookigTitle) i’ S0L Assist |
Append to Script |
-
=

Le chateau de mon pere

15 recordis) selected.

4

Pl

Or (if you haven't configured the DB2 Command Center according to section 4.2):

16

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

B! Command Center 3 - O] =]

Command Center Query Results Edit Tools Help M
r B H R D Q03F 90 2a @3
Interacti\rel Script { | ACCESS F'Ianl

Perform required changes and then click the commit update buttan.
M

Archeology in Egypt

Database Systems in Practice
Contact

The Fourth Star

Varen vid sjin

Dadliga Data

hlusic Mow and Before
hidsommoar i Lund

Encore une fois

European History

musical Instruments

Oceans on Earth

The Beach House

Le chateau de mon pare

[t Rows in mermory 15 [1-15]

[Automatically commit updates Commit Update Rollhack

If you used the script mode then the result should look like this:

Command Center == x|

Command Certer Script Edit Tools Help . =
B EHEHBREE0IE 9D Bas @D

Interactive SCHPII Query Results | Access Plan|

Script history

[untitieat =l

Script
| SELECT DBE2ZXML extractvarcharizmldoc, TBooki@Title) FROM xmlcal

I Lels

The Beach House

Le chateau de mon pere

15 recordis) selected. =
4 | ’

17

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

You have to scroll up and down to see the entire result. This is because the extractVarchar
function always returns a 4000-characters long string. To avoid this we can use the function
substr. This function takes a string and returns a sub-string of a specified length. Here is the
same SQL statement as before, but with the substr function:

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Title"),1,30) FROM xmicol
This will create a sub-string 30 characters long starting from the 1% character.

Here is the result:

B Command Center O] x|
Command Center Script Edit Tools Help _\.-‘n@-j

r D P A ST E BE Bi:E D

Interactive SCfiptl Query Results | Access Plan |

Script history

[untitiedt |

Script

SELECT substr{DB2HML extractvarcharfxmldaoc, YBoaki@Title), 1,300 FROM xmlcoll

Script _‘I

Tntitledl

SELECT substr(DBZXML. extractVarchar (xmldoc, ' /Book/BTitle'),1,30) FROM xmlcol

1

Mizty Nights

Archeology in Egypt
Darabase Systems in Practice
Contact

The Fourth Star

Varen vid sjdn

Didliga Data

Huzic Now and Before
Midsommar i Lund

Encore une fois
European History
Masical Instruments
Oceans on Earth

The Eeach House

Le chateaun de mon pere

15 record(s) selected.

=
4« | »

You can notice in the result that the returned column doesn't have a name. It is therefore
automatically called "1" since it is the 1% column. We can assign a name for the column by
using the keyword AS. This is how the SQL statement and the result would look then:

SELECT substr(DB2XML.extractVarchar(xmldoc,/Book/@Title'),1,30) AS "The Title"
FROM xmlcol

18

Department of Computer DB2 & XML Lab v. 3.3

And Systems Sciences 1S4/2i1242/2i4042 spring 2004
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

B Command Center
command Center Script Edit Tools Help

% D EPELAO0EE 303 Bi: @O

Stockholm
August 2007

Interactive Scrim| Query Results | Access Plan|
Script history

[untitedt =l
Script
SELECT substriDB2ZXML extractyarcharfxmidoc, "BookigTitle, 1,303 AS "The Title" FROM xmicaol :AI

Script

Tnritledl

The Title

Mizty Nights
Archeology in Egypt
Darabase Systems in Practice
Contact

The Fourth Star

Varen vid sijdn
Didliga Data

Muzic Now and Before
Midsommar i Lund
Encore une fois
European History
Musical Instruments
Oceans on Earth

The Beach House

Le chateau de mon pere

15 record(s) selected.

4 |

SELECT substr(DEZXML.extractVarchar (xmldoc,' /Book/@Title'),1,30) A3 “The Title™ FROM xmlcol

515

Finally we may want to order the results alphabetically. We can then add an ORDER BY
clause® to the SQL statement (Observe that the column name that we define with the keyword

AS are not available in the ORDER BY clause.):

SELECT substr(DB2XML.extractVarchar(xmldoc,/Book/@Title'),1,30) AS "The Title"

FROM xmlcol ORDER BY 1

And now the result is ordered:

8 In order to use a column in the ORDER BY clause, the column has to be 255 character or less (if it is a
string). All other types (real, integer, time, etc) can also be used in the ORDER BY clasuse. The same rule

applies to the use of DISTINCT.

19

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

B Command Center =101 x|
Command Center Script Edit Tools Help _.Mﬂ

» D EHPES0LE 90 Bi: @03

Interactive Sﬁfiml Query Results | Access Plan|

Script history

|untitied |
Script
SELECT substriDB2XML extractvarcharixmidoc, fBooki@@Title), 1,300 AS "The Title" FROM xmicol CRDER BY 1 il
The Title :I

Archeology in Egvpt
Contact

Darabase 3ystems in Pracrice
Didliga Data

Encore une fois
European History

Le chateau de mon pere
Midsommar i Lund
Histy Nights

Misic MNow and Before
Musical Instruments
Oceans on Earth

The Beach Houze

The Fourth 5Star

Yaren wid =jdn

15 recordis) selected.

4 | o

We can look now at something more complicated. The following question for example:

List all the titles and original language for all the novels! Sort the results by language and
then by title!

In this case we will have two columns in our result and we also have one condition. Both our
columns contain string values, so we will have to use the extractVarchar function. We will
look at two ways of representing the condition. We start first with having the condition in the
path:

SELECT
substr(DB2XML.extractVarchar(xmldoc,'/Book[@Genre="Novel")/@Title'),1,30) AS
"Title",

substr(DB2XML.extractVarchar(xmldoc, /Book[@Genre="Novel"]/@OriginalLanguage
7,1,20) AS "Language" FROM xmlcol ORDER BY 2, 1

20

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

The result of this SQL statement returns one row for each XML document, even if the
condition was not fulfilled:

1ol x|
Command Center Script Edit Tools Help _-j‘:?-ﬂ

% D EPES05E 50 Ba2 @3
Interactive Sﬁriml Query Results | Access Plan |
Script history

[Untitledt |

Script

[@Genre="Navel'li@Title},1,30) AS "Title", substrDBZXML extractvarcharixmlidoc, "Bookl@Genre="Novel'l{@0riginalLanguage’), 1,300 AS "Language" FROM xmlcol ORDER BY 2;'

& o
) =

Untitledl

SELECT substr(DEZXML.extractVarchar (xmldoc, ' /Book[BGenre="Novel"]/BTitle'),1,30) A3 "Title”, substr(DBZXML.extract¥archar(xmldoc, ' /Book[E

Tirle Laniuadge

The Beach House English
Midsommar i Lund dwedish
Viren wid sjdn Swedish

15 recordis) selected.

=
| »

This is the disadvantage of using conditions in the path. We will now look at another way to
using a condition. We can use an extract funtion in the WHERE clause of the SQL statement:

SELECT
substr(DB2XML.extractVarchar(xmldoc,'/Book/@Title"),1,30) AS "Title",

substr(DB2XML.extractVarchar(xmldoc, /Book/@OriginalLanguage’),1,20) AS "Language"
FROM xmicol

WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = ‘Novel'
ORDERBY 2,1

This version returns only three rows (one for each XML document that fulfilled the
condition):

21

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

=1olx|
Command Center Script Edit Tools Help lm

2 D EgPDS0SE 80 Ba €32
Interactive Scriptl Query Results | Access Plan |
Seript histary

[Untitle |

Script

HDBZHML extracty/archartanidoc, JBooki@0riginalLanguage),1,20) AS “Language” FROM xmicol WHERE DEZXML extractyatchar(emidor, iBooki@Genre) = Movel' ORDER By 2.4

R]
=

Untitledl

SELECT =substr (DEZXML.extractVarchar (xmldoc, ' /Book/BTitle'), 1,500 A3 "Title”, substr(DEZWML.extract¥archar (xmldoc,'/Book/B0riginallanguage

Tirle Languadge

The EBEeach House English
Midsommar i Lund Swedish
Varen wid sjdn Swedish

3 record(s] selected.

| HEE

We can of course use aggregate functions to answer questions like this one:

How many books of each genre are there?

We can then use the COUNT function and the GROUP BY clause to solve this. The only
problem is that the column we want to use for grouping doesn't exist from the beginning. We
must therefore break the query into two. First we must create a table with all the genres from
all the XML documents and then work with that table. This is the first part:

SELECT substr(DB2XML.extractVarchar(xmldoc,/Book/@Genre'),1,15) AS Genre
FROM xmlcol

We can now use this part in the FROM clause of a new SELECT statement:

SELECT Genre, COUNT(*) AS "Amount of Books"

FROM (SELECT substr(DB2XML.extractVarchar(xmldoc,/Book/@Genre’),1,15) AS
Genre FROM xmicol) AS temptable

GROUP BY Genre

This will produce the following result:

22

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

B Command Center Ol x|
Command Center Interactive Edit Tools Help “ﬂd:

B i P E GO AE HE BE 9D
Interactive | Script] Query Resutts | Access Plan |

Database connection
|LOCAL - DB - BOOK |

Cormmand history
ISELECT Genre, COUNT{™ AS "Amount of Books" FROM (SELECT substriDBZEML. extractvarcharfxmidoc, fBooki@Genre),1,15) AS Genre ... ;l

Command

SELECT Genre, COUNT) AS "Amount of Books" - Sl Assist |

FROM (SELECT substr{DBZ:ML extractvarcharixmlidoc, \Booki@Genre),1,15) AS Genre FROM ¥micol) AS termptable
GROUP BY Genre Append to Script |

il

———————— Comnand Entered -------- EEEEE =

SELECT Genre, COONT(*) A5 "amount of Books™

FROM (SELECT substr (DBE2XML.extractVarchar (xmldoc,'/Book/BGenre'),1,15) A% Genre FROM xmlcol) A% temptable
GROUP BY Genre

SELECT Genre, COUNT(*) A% "Awount of Books™ FROM (SELECT substr (DEZXML.extractVarchar (xmldoc, ' /Book/[dGenre'), .

GENEE dumount of Books
Educational 6
Nowel 3
Science Fiction =
Thriller z
S Z

5 recordis) selected.

[
4 | L|;I

So far we have only used paths that appeared only once in each XML document. The
following question requires data from paths with multiple values:

Which authors have written thrillers or science fiction?

To solve this we will need to use the extractVarchars function. We will also use the
extractVarchar function for checking the conditions:

SELECT substr(returnedVarchar,1,30) AS Authors

FROM xmlcol, table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t
WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre’) = "Thriller'

OR DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Science Fiction'

Since we have to use one of plural extract functions, we also have to use the table function to
capture the result. In the FROM clause we must have first the table xmlcol and then the table
function, otherwise the extractVarchars function in the table function will not know where
the xmldoc comes from. The result of the table function is also given a name (t) with the
keyword AS.

23

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

The result of this SQL statement is the following:

B Command Center o]
Command Center Interactive Edit Tools Help :"\.ﬁm:

P B 2P E AO0IE BHED Bi:oE 3
Interactive | Script| Query Results| Access Plan|

Database connectian
|LOCAL - DBZ - BOOK [

Command histany
|SELECT substrireturnedvarchar,1,30) AS Authors FROM xmicol, tablefDBZXML extractvarcharsxmidoc, BookiAuthari@iName) AS tWHER...;I

Carmand

SELECT substrireturnedvarchar,1,30) AS Authars - SaL Assist |
FROM xmicol, table(DB2ZXML extractWarcharsixmidoc, \BookAutho@Mame) AS

WHERE DB 2xML. extractvarcharizmidoc YBookigGenre’) = Thriller' Append to Script |

OR DBZEML exractarcharxmidoc, /Booki@Genre’ = "Science Fiction'

=

e Command Entered ---------———-—-—————- ==
SELECT substr(returnedVarchar,l,30) 43 Authors

FROM xmlcol, tahle(DB2XML.extractVarchars(xmldoc, ' /Book/duthor/@Naue')] 45 t
WHERE DEZxML.extractVarchar (xmldoc,'/Book/[@Genre') = 'Thriller’

OF DEZMML.extractVarchar (xmldoc, ' /Book/EGenre') = 'Science Fiction'

SELECT substr(returnedVarchar,1,30) 453 Authors FROM xmlcol, table(DBEZXML.extractVarchars(xmldoc,' /Book/Author,

ATTHORS

John Craft
Carl Hagan
Leslie Brenner
JTakob Hanson

4 recordis) selected.

=
«| | »

We could of course return all the details of the authors instead of just the name, but if we
would try to do this with three table functions, we would risk getting invalid results. The
following query for example would not work:

SELECT substr(tl.returnedVarchar,1,30) AS Author,

returnedinteger as Year,

substr(t3.returnedVarchar,1,15) AS Country

FROM xmlcol,

table(DB2XML.extractVarchars(xmldoc, /Book/Author/@Name")) AS t1,
table(DB2XML.extractintegers(xmldoc,'/Book/Author/@YearOfBirth")) AS t2,
table(DB2XML.extractVarchars(xmldoc, /Book/Author/@Country’)) AS t3
WHERE DB2XML.extractVarchar(xmldoc, /Book/@Genre') = 'Thriller'

OR DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Science Fiction'

24

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

The reason is that the three table functions would be joined without any condition, so if

a

book has 2 authors we would get 8 (2*2*2) combinations of the two names with the two years
of birth and the two countries. Similarly if a book would have five authors there would be 125

combinations. To avoid this, we have to use the extractCLOBSs function instead!

But first, let's see what the extractCLOBs function does. If we want to extract a part of an
XML document as a smaller XML document we can use the extractCLOBs function. In the
example that follows we extract the Edition elements of all the thrillers as new XML

documents:

SELECT substr(returnedCLOB,1,300) as "Thriller Editions"

FROM xmlcol,

table(DB2XML.extractCLOBs(xmldoc,'/Book/Edition’)) AS t

WHERE DB2XML.extractVarchar(xmldoc, /Book/@Genre') = 'Thriller'

The function substr is only used to make the result smaller, since I know that the new XML
documents are not that big. The path used in the extractCLOBs function does not have an
attribute at the end. It has instead the element that is to be the root element of the new XML

documents:
B Command Center _ o] x|
Command Center Interactive Edit Tools Help M‘\mmz

B EH B E &0 dHE E D 2BE w3
Interactive I Scriptl Query Resultsl ACCESS F'Ianl
Datahase connection
|LOCAL - DB2 - BOOK [

Command history
ISELECT substrireturned CLOB,1,300) as "Thriller Editions" FROM xmilcol, tabledDBZ:ML extractCLOBs(xmidoc, YBook/Edition) AS tWHER. .. LI

Command

SELECT substrireturnedCLOB, 1,300 as "Thriller Editions" o SaL Assist |
FROM xmilcal,

table(DBZEML extractCLOBsmidoc, 'BookfEdition) AS t Append to Script |

WHERE DBZ=ML.extractvarcharixmldoc YBooki@Genre) = Thriller
=l

SELECT substr(returnhedCLOE,1l,300) as "Thriller Editions"™ il
FROM xmlcol,

table (DEZXML.extractCLOEs (xmldoc, ' /BEook/Edition')) A5 ©

WHERE DEZXML.extractVarchar (xmldec, ' /Book/BGenre') = 'Thriller!

Thriller Editions

<Edition ¥Tear="1957" Price="1zZ0">
<Translation Language="German”™ Publisher="Eingsly" Price="130"></Translations
<Translation Language="French”™ Publisher="addison” Price="135"></Translation>
<Translation Language="Russian™ Publisher="addison"” Price="1Z5":=</Translation-
</Editiomns:
<Edition Year="1993" Price="1z0">

< /Editiomn-

2 record(s) selected.

=
| | »

25

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

The way to solve the previous question with the extractCLOBs function instead of the three
table functions (that did not work) would be the following:

First we extract CLOBs for all the Author elements of books that match the condition criteria
and then we can use the simple extract functions to retrieve the wanted data from the new
XML documents (the CLOBS):

SELECT
substr(DB2XML.extractVarchar(DB2XML.XMLCLOB(t.returnedCLOB),'/Author/@Na
me"),1,30) AS Author,
DB2XML.extractinteger(DB2XML.XMLCLOB(t.returnedCLOB),'/Author/@YearOfBirth
") as Yeat,
substr(DB2XML.extractVarchar(DB2XML.XMLCLOB(t.returnedCLOB),'/Author/@Cou
ntry'),1,15) AS Country

FROM xmlcol,

table(DB2XML.extractCLOBs(xmldoc,'/Book/Author’)) AS t

WHERE DB2XML.extractVarchar(xmldoc, /Book/@Genre') = 'Thriller'

OR DB2XML.extractVarchar(xmldoc,'/Book/@Genre’) = 'Science Fiction'

The function XMLCLOB of the schema DB2XML is also used here. This is a casting function
that takes a CLOB value and returns it as an XMLCLOB value. This is required because the
extract functions expect a variable of XML data type (such as XMLCLOB or
XMLVARCHAR). This SQL statement returns all the information on authors that have
written thrillers or science fiction:

B command Center o (=]
Command Center Interactive Edit Tools Help W% = |

oo B2 W B8 & 0O 4B OE T B & W 32

Interactive I Scriptl Query Resultsl Access F'Ianl

Databhase connectiaon
[LocaL- DBz-BOOK -]

Command history
ISELECT substriDE XML exractvarcharDB 2L =MLC L OB returned CLOBR), SAuthon@iame, 1,300 AS Author, DRZHML exractinteger(0B v|

Cormrmand
SELECT substriDBZXML extractfarcharDB2ZHMLXMLCLOBG returned CLOB), Yauthor@iame’, 1,300 AS Author, - S0l Assist |
DBEZML exdractintegerDB2ZML XMLCLOB returnedCLOB), YAutho @Y earOBinh) as Year,
substrDB ML extractarcharDB2ZHMLXMLC LOB L returned CLOB), Yauthorf@C ountryd, 1,18) AS Country Append to Script |
FROM xrnlcol,

tahle{DB2HML extractCLOB s xmldoc, YBookiAuthory) ASﬂ
WHERE DBEZEML extractyarcharixmldoc YBooki@Genre) = Thriller'
OR DBZHML. extractvarcharxmldoc, YBookli@Genre) = 'Science Fiction'

=
FROM xmlcol, |
table (DEEFML. extractCLOEs (xmldoc, ' /Eook sduthor')) A5 ©
WHERE DBZXML.extractv¥archar (xmldoc, ' /Book/s@Genre'] = 'Thriller’

OR DEZMML.extract¥archar (#xmldoc, ' /Book/@Genre') = 'Science Fiction!'

SELECT substr (DEZX¥ML.extractVarchar (DEZXML.XMLCLOE [t.returnedCLOE) , ' Abuthor /Name ') ,1,30) AS Author, DEZXML. e:

table (DEEZXML. extractCLOEs (xmldoc, ' /Boocksduthor')) A3 © WHERE DEZXML.extractVarchar (xmldoc,'/Eook/@Genre') = '7
AUTTHOR TEAR. COUNTEY

John Craft 1945 England

Carl ZHagan 1913 54

Leslie Erenner 1945 T34

Jakob Hanson 1946 Sweden

4 recordi(s) selected.

=
4| | »

26

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Sometimes it may be necessary to combine in the result, data from different levels of the
XML structure. The following questing asks as to do exactly that:

Make a list of all the educational books and the authors that have written each book! Show
the book title and the authors name and country! Show only authors that are born after 1950!

To solve this we will need to have conditions on two levels and also retrieve information from
two levels. When solving a problem like this, we always start at the higher level of the XML
structure (the Book element) and move step by step through the sub-elements. The first thing
to do is to check the genre of the books and retrieve the title and the authors (as CLOBS).
When we have done that we can start working with the contents of the author CLOBs. The
first part can be done with the following SELECT statement:

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Title"),1,30) AS Title,
DB2XML.XMLCLOB(t.returnedCLOB) AS AuthorXML

FROM xmlcol,

table(DB2XML.extractCLOBs(xmldoc,'/Book/Author’)) AS t

WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre") = 'Educational’

This will create a table with two columns (the book title and the author CLOB) and one row
for each author of each educational book. We also cast the returned CLOB into an
XMLCLOB, so that we don't have to do it later.

We can now use this SELECT statement as the source for an outer SELECT source. This
means that we assign a name to the result of this SELECT statement, which will be
considered by the new SELECT statement as a table with two columns (Title and
AuthorXML).

The new SELECT statement will then retrieve the name and country of the authors and
control the year of birth:

SELECT Title,
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Name"),1,20) AS "Author Name",
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,15) AS "Author Country"

FROM (SELECT substr(DB2XML.extractVarchar(xmidoc,/Book/@Title'),1,30) AS Title,
DB2XML.XMLCLOB(t.returnedCLOB) AS AuthorXML
FROM xmlcaol,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Author’)) AS t

WHERE DB2XML.extractVarchar(xmldoc,/Book/@Genre’) = 'Educational’) AS temptable
WHERE DB2XML.extractinteger(AuthorXML,'/Author/@YearOfBirth") > 1950

And the result is the following:

27

Department of Computer
And Systems Sciences
SU/KTH

nikos dimitrakas

DB2 & XML Lab v. 3.3

Stockholm

B Command Center

Command Center Interactive Edit Tools Help

2 = R E R R = N
Interactive | Scriptl Quary Results| ACLESS F'Ian|

Database connection

€2 5 =B & | 32

1S4/2i1242/2i4042 spring 2004 August 2007
Models and languages for object,
relational and web databases
o [

|LOCAL - DB - BOOK

N

Command history

ISELECTTitIe, substriDBZEML. extractvarchariAuthok<ML, Aathori@iame’, 1,200 AS "Author Name”, SubStr(DEIEXML.eMracNarchar(Authar...;l

Command

SELECT Title,

DEZMLXMLCLOB returned S LOB) AS Author<ML
FROM xmlcal,
tableDB2HML extractCLOBs mildoc, "BookiAuthor AS t

substriDB2EML extractvarchariauth oML, iauthori@iarmen, 1,200 AS "Authar Mame”,
substr{DBZML extractvarchariAuthor-ML, VAuthori@C ountry) 1,15) AS "Author Country”
FROM (SELECT substr{DBZXML.extractvarcharixmidoc, \Book/@Title),1,30) AS Title,

WHERE DBEZ¥ML. extractvarcharfamidoc, "Booki@Genre = ‘Educational) AS termptable
WHERE DBEZ¥ML. extractintegerfauthor=ML, TAuthori@yearOfBirth = 1950

Al soLassist |
Append to Seript |

-

TITLE duthor Name

SELECT Title, substr(DE2XML.extractVarchar (AuthoryML, ' duthor/@Nawe'), 1,200 A% "Author Nawe™, substr{DBZXI-IL.e:\;I
xmleol, tahle (DBZXHML.extractCLOBs (xwldoc, ' /Book/Author')) A% t WHERE DEZXML.extractWarchar (xmldoc, ' /Book/@Gem

Author Country

Arnie Bastoft
Heg Gilmand
Alan Griff
Marty Faust
Celine Biceau

Archeology in Egqypt

Archeology in Egypt

Datahase Systems in Practice
Datahase Systems in Practice
Databhase Systems in Practice
Music Now and Before Mimi Pappas
Musical Instruments 4licia Bing
Oceans on Earth Linda Ewvans
Oceans on Earth Chuck Morrissom
Oceans on Earth Kay Morrisson

10 recordis) selected.

4 |

bustria
bustralia
T34

U354
Canada
T34
Eelgium
QI
England
England

o

Now we are ready to look at really complex example. The following qualifies as such:

Show a list of all the authors born after 1940, the amount of book editions they have written
and the amount of different languages each author's books have been translated to! Also show
the average price of the book editions for each author! The result shall have the following
columns: Author Name, Author Country, Amount of editions, Amount of translation
languages, Average price. The result shall be sorted by author name!

To solve this we will need to work in many steps. First we need to extract the editions and the

authors:

SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,
DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML

FROM xmlcol,

table(DB2XML.extractCLOBs(xmldoc, /Book/Author’)) AS t1,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Edition’)) AS t2

This will return all valid combinations of authors and editions (54 such).

28

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Next thing we have to do is to extract the name and country of the authors and also get rid of
the authors that were born 1940 or earlier. At the same time we can also extract the edition
price:

SELECT substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Name'),1,20) AS Name,
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,20) AS Country,
DB2XML.extractinteger(EditionXML,'/Edition/@Price") AS Price

FROM (SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,
DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmlcol,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Author’)) AS t1,

table(DB2XML.extractCLOBs(xmldoc, /Book/Edition’)) AS t2) AS temptablel
WHERE DB2XML.extractinteger(AuthorXML,'/Author/@YearOfBirth") > 1940

We can now use this SQL statement in the FROM clause of the next SELECT statement.
Now we have enough information to count the amount of editions and even calculate the
average edition price:

SELECT Name, Country, COUNT(*) AS "Amount of editions", AVG(Price) "Average edition price"

FROM (SELECT substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Name'),1,20) AS Name,
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,20) AS Country,
DB2XML.extractinteger(EditionXML,'/Edition/@Price’) AS Price

FROM (SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,
DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmicol,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Author’)) AS t1,

table(DB2XML.extractCLOBs(xmldoc, /Book/Edition")) AS t2) AS temptablel
WHERE DB2XML.extractinteger(AuthorXML,/Author/@YearOfBirth) > 1940) AS

temptable2
GROUP BY Name, Country

This statement has now four columns. These are four of the five that we need to have in the
final result.

29

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

B Command Center =10l x|
Command Center Interactive Edit Tools Help w\md:
ok BB E &0 D E HEE B E E 3
Interactive | Scriptl Quary Results| ACLESS F'Ian|

Database connection

|LOCAL - DB - BOOK |

Cormmand history
ISELECT Mame, Country, COURNT™ AS "Amount of editions”, AVG(Frice) "Average edition price” FROM (SELECT suhstr(DEl2}<h.|1L.extracNarc...;|

Command
SELECT Mame, Country, COUNT(™) AS "Amount of editions", AVG(Price) "Average edition price” 1= S0L Assist |
FROM (SELECT substiDBZML extractvarchariauthormL, VAuthor@iame’, 1,203 AS Mame,
substDBZ-ML extractVarchariauthor<mL, VAuthori@c ountry) 1,20) AS Country, Append to Script |
DBEZHML extractintegenEdition:mML, VEdition/g@Price) AS Price
FROM (SELECT DBEZXMLXMLCLOB{T returned ZLOB) AS Author<ML,
DEZHMLXMLCLOB{Z returned CLOB) AS EditionxML
FROCM ¥micol,
tableDB2xML extractCLOBs mldoc, YBookiAuthar AS 11,
table(DBZEML extractCLOBS (imidoc, YBookEdition)y AS t2) AS temptahlel
WHERE DBZ¥ML. extractinteger(author-mL, YAuthor@yearOmBirth) = 1940) AS termptable2 [
GROUP BY Mame, Country _'I
HNAME COUNTEY Amount of editions adwerage edition price ;I
Alan Griff LT Z 435
&licia Bing Belgium 2 400
Aantie Liedderman Germany 1 650
Arnie Bastoft dustria 3 270
Auna Gonzales Perre Portugal 1 650
Celine Biceau Canada 2 435
Chriz Ryan France 3 270
Chuck Morrisson England 4 445
JTakob Hanson Sweden 1 120
Jamez Patterson LT 1 150
John Craft England 1 120
Kay Morrisson England 4 445
Leslie Brenner US4 1 210
Linda Ewvans T34 4 445 -
4| | »

The last (missing) column is the amount of different languages every author has been
translated into. To get that, we have to start from the beginning again. This means that we will
have half of the results in one SQL statement and the other half in another. We will simply
need to join the two results at the end.

So to retrieve the different languages we start from the xmlcol as we did before, but this time
we can extract directly the author names and the translation languages (all the valid
combinations). Since we are going to join the result of this part with the result from before,
we need not care about the conditions (The invalid authors will automatically get filtered out
when we join with the list of the valid ones that we created before.):

SELECT substr(tl.returnedVarchar,1,20) AS Name,

substr(t2.returnedVarchar,1,20) AS Language

FROM xmlcol,

table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t1,
table(DB2XML.extractVarchars(xmldoc, /Book/Edition/Translation/@Language’)) AS
t2

30

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Notice that here it is okay to use two table functions together because we do want all the
combinations of languages and author names!

Now we can use this result to count the different languages every author has been translated
into:

SELECT Name, COUNT (DISTINCT Language) AS "Amount of languages"

FROM (SELECT substr(t1.returnedVarchar,1,20) AS Name,
substr(t2.returnedVarchar,1,20) AS Language
FROM xmlcol,
table(DB2XML.extractVarchars(xmldoc, /Book/Author/@Name')) AS t1,

table(DB2XML.extractVarchars(xmldoc, /Book/Edition/Translation/@Language’)) AS t2) as t
GROUP BY Name

This returns two columns: the author name and the amount of different languages:

B! Connmand Center =10l x|
Command Center Interactive Edit Tools Help -
ek P EH &G0 JdE EHE B & G2
Interactive | Script| Query Results| Access Plan|

Database connection

|LOCAL - DBZ - BOOK |

Command history
|SELECT Name, COUNT {DISTINCT Language) AS "Amount of languages’ FROM (SELECT substrit! retumedvarchar,1,20) AS Name, sub.. |

Command

SELECT MNarmme, COUNT {DISTINCT Languadge) AS "Amount of languages” ﬁ S0l Assist |
FROM {SELECT substrit! returnedvarchar 1,203 AS Mame, =

substri? returnedvarchar, 1,200 AS Language Append to Script |
FROM xmicol,

table(DB ML extractyarchars imidoc, WBook/Authorf@Mame) AS t1,
tableDB2ZML extractyarchars imidoc, Book/Edition/Translationf@Language AS t2) as t
GROUP BY Mame

=
A
HAME Amount of languadges
Alicia Bing 7
Andreas Shultz 1z
Antie Liedderman 1z
Arnie Bastoft 5
buna Gonzales Perre 1z
Carl George 12
Carl Sagan 3
Chris Ryan 5
Chriztina Ohlsen 1z
Chuck Morrisson [
Franc Desteille 5
John Cratt 5
Kay Morrisson G
Eostas indrianos 1z
Leslie Brenner 1
Lilian Carrera 1z

Linda Ewrans 6 -
4| | »

The author name is the column that this result and the previous result have in common, and it
is the one we need in order to join the two results.

31

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Now to join the two parts. We can simply construct a new SELECT statement and place the
two parts as two tables in the FROM clause. Then we simply use as a join condition, checking
that the author names are equal:

SELECT partl.Name AS "Author name",

Country AS "Author Country",

"Amount of editions”,

"Average edition price",

"Amount of languages"

FROM

(SELECT Name, Country,

COUNT(*) AS "Amount of editions",

AVG(Price) "Average edition price"

FROM (SELECT substr(DB2XML.extractVarchar(AuthorXML,/Author/@Name'),1,20) AS Name,
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country’),1,20) AS Country,

DB2XML.extractinteger(EditionXML,'/Edition/@Price’) AS Price

FROM (SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,
DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmicaol,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Author’)) AS t1,

table(DB2XML.extractCLOBs(xmldoc, /Book/Edition")) AS t2) AS temptablel
WHERE DB2XML.extractinteger(AuthorXML,'/Author/@YearOfBirth) > 1940) AS
temptable2
GROUP BY Name, Country) AS partl,
(SELECT Name, COUNT (DISTINCT Language) AS "Amount of languages"

FROM (SELECT substr(t1.returnedVarchar,1,20) AS Name,
substr(t2.returnedVarchar,1,20) AS Language
FROM xmlcol,
table(DB2XML.extractVarchars(xmldoc, /Book/Author/@Name')) AS t1,

table(DB2XML.extractVarchars(xmldoc,/Book/Edition/Translation/@Language')) AS t2) as t
GROUP BY Name) AS part2
WHERE partl.Name = part2.Name
ORDER BY 1

And the result will look nicely like this:

32

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

B Command Center =10l x|
Command Center Interactive Edit Tools Help mm
ek BB E &0 D E HEE B E E 3
Interactive | Scriptl Quary Results| ACLESS F'Ian|

Database connection

|LOCAL - DB - BOOK |

Command history

ISELECT part! Mame AS "Author name”, Country AS "Author Countr®, "Amount of editions”, "Average edition price”, "Amount of languages... ;l

Command
substri2 returnedvarchar1,20) AS Language d SGL Assist |
FROM #milcal, =
table(DB ML extractyarchars imidoc, WBook/Authorf@Mame) AS t1, Append to Script |
tableDB2ZML extractyarchars imidoc, Book/Edition/Translationf@Language AS t2) as t
GROUP BY Mame) AS part2
WHERE part1 Mame = part2. Mame
ORDER BY 1 j
-

[
Author name Aduthor Country Amount of editions &werage edition price dwount of lancgquages
Alicia Bing Belgium 2 400 7
Aantie Liedderman Germany 1 650 1z
Arnie Bastoft dustria 3 270 5
Auna Gonzales Perre Fortugal 1 &50 1z
Chris Ryan France 3 270 5
Chuck Morrisson England 4 445 &
John Craft England 1 1z0 3
Kay Morrisson England 4 445 &
Leslie Brenner T34 1 210 1
Linda Evans LT 4 445 &
Meg Gilmand Australia 3 270 5
Mimi Fappas LT 2 317 2
Pierre Zargone Belgium Z 135 1

13 recordis) selected.

-

4| | »

For even more explained examples you can take a look an older version of the lab
compendium pages 29-36 (model of XML structure on page 10). This can be found at

\\Db-srv-1\StudKursInfo\lS4 vt2004\DB2-XML\Comdendium DB2-XML v.2.0 (ht2001).doc

4.2.2 Manipulating data

Retrieving data from the XML documents is not always enough. Sometimes we need to
change a value in an XML document, without having to delete the entire document and insert
it after manually making a change. We may also want to do some methodic change in the
entire XML column, such as change the word "USSR" to "Russia" for any attribute named
Country.

In this section we will look at a couple of examples of doing such changes. We will start with
the following problem:

Change the e-mail of Jakob Hanson to hanson@home.se!

33

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

We can do this in two different ways. The first way is to go through every XML document in
the XML column and update the path /Book/Author[@Name="Jakob Hanson")//@Email to
hanson@home.se. This would of course do a lot of extra work, but in a smaller system it may
not matter. The other way would be to first find the XML documents the contain an author
name Jakob Hanson and then change his email in those documents. Both ways will produce
the same result.

Here is an UPDATE statement for the first variant:

UPDATE xmicol

SET xmldoc = DB2XML.update(xmldoc,
'/Book/Author[@Name="Jakob Hanson"J/@Email’,
'hanson@home.se’)

After running this we get a message that the command was completed successfully, but we
may also want to verify that the e-mail address really got updated. We can simply do that with
the following SQL statement:

SELECT substr(DB2XML.extractVarchar(xclob,'/Author/@Email’),1,20) AS Email
FROM (SELECT DB2XML.XMLCLOB(returnedCLOB) AS xclob

FROM xmlcol,

table(DB2XML.extractCLOBs(xmldoc,'/Book/Author)) AS t) AS temp
WHERE DB2XML.extractVarchar(xclob,'/Author/@Name') = 'Jakob Hanson'

The other version of the UPDATE statement would look like this:

UPDATE xmicol
SET xmldoc = DB2XML.update(xmldoc,
'/Book/Author[@Name="Jakob Hanson"[/@Email’,
'‘hanson@home.se’)
WHERE 'Jakob Hanson' IN
(SELECT returnedvarchar
FROM table(DB2XML.extractVarchars(xmldoc, '/Book/Author/@Name")) as t)

This version is much faster, but it may be difficult to detect when the slow version only takes
a second or two. For the exercises in the next session you can use any of the two styles.

4.3 Assignments

Solve the following questions:

1. Make a list of all the publishers! (No duplicates)

2. How many educational books have been written originally in English?

3. How many translations are there for each book that was originally in English?

4. Which books where written by more than two authors? (Show the book titles!)

5. Show all the English books (OriginalLanguage = English) and the price for any edition
after 1975! (Show the title, the edition year, and the price!)

6. Make a list of all non-Swedish authors with their e-mail addresses and year of birth!

34

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

7. Change the year of birth of the Australian author of the book "Archeology in Egypt" to
1966!
8. Reduce the price (edition price) of any Swedish book written in 1985 to 30!

5 Voluntary Exercises

In this chapter we will look at DB2's facilities for transforming relational data into XML
documents. Even though this part is not a requirement for the course it can be interesting to
know have to create XML documents from data stored in relational tables.

In this chapter we will go through the following:

» Create a database (relational database).

» Enable the database for XML (as an XML collection) and compose XML documents from
the data in the XML collection (the database).

» Extract XML documents into XML files.

» Store XML documents in an XML column (which is similar to what we did (with the
script in section 3.1).

All the files required in this chapter, as well as a text file with all the commands, are available
at:

\\Db-srv-1\StudKursInfo\lIS4 vt2004\DB2-XML\Files for Voluntary Exercises

5.1 Create a database

The database can easily be created and populated by using the scripts (see section 3.2). To run

the scripts follow these steps:

e Open the DB2 Command Center (Start > Programs > DatabaseManagementSystems >
IBM-Database-Systems > IBM DB2 > Command Center)!

e Go to the Script tab!

35

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

B! Command Center
Command Center Script Edit Tools Help

D P E 0EE 20 Bi €@

=10l x|

Interactie Scrint| Juery Results | Access Plan|
Script histony

|Untittedt |
Script
Kl I b

e Copy and then paste the contents of
command center!

H riding.tables_script - Notepad
Eile Edit Search Help

DROP TRIGGER statustrigger| [|

DROP DATABASE riding
CREATE DATABASE riding
ONNECT TO riding

[x]

the first script file (riding.tables.script) into the

B command Center =10fx]

Command Center Script Edit Tools Help 2 ».\.:@_ﬂ
3 30903500 B @O

Interactive 5CHm| Quety Resuilts | Access Plan|

[x]

REATE TABLE race (raceid UARCHAR({18) NOT NULL, 4

CREATE TABLE contestants (raceid UARCHAR(18) NOT

REATE TRIGGER statustrigger NO CASCADE BEFORE I

[x]

DISCONNECT riding

ORCE APPLICATIONS ALL

Seript

CREATE TABLE race (raceid VAR ITNOT NULL DEFAULT 1, distanee INTEGER M

(CREATE TABLE contestants (raceid VARCHAR(10) NOT NULL, horsename VARCHAR(20) NOT NULL, tidemame VAR!
CREATE TRIGGER statustrigger NO CASCADE BEFORE INSERT ON contestants REFERENCING NEW AS N FOR EAC
DISCONNECT riding

FORCE APPLICATIONS ALL| -
| |

Jil[]

36

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

e Execute the script by pressing the execute button @ (or by pressing Ctrl-Enter)

When the execution of the script is finished, your database has been created. For populating
the database use the second script file (riding.insert.all.script).

5.2 Enable the database for XML (as an XML collection) and
compose XML documents

When the database has been created, it is just an ordinary relational database. If the database
IS going to be used as an XML collection then it has to be enabled for XML. That is done by
using the following:
e Start the Command Window (Start > Programs > DatabaseManagementSystems > IBM-
Database-Systems > IBM DB2 > Command Window)
e Execute this command in the Command Window:
Dxxadm enable_db riding

= |DB2 CLP =0l x|

C:~SQLLIB~BIN>Dxxadm enahle_dbh riding :J
DEXAAB2ZI Connecting to database RIDING.

DEXABBES]I Enabling databaze RIDING. Fleaze wait.

DEXABBGI The database xsuwo.sg wasz enabled successfully.

C:~SQLLIBSBIM:>_

=]

When that is done there should be a few more tables in the database. Those tables are used by
the XML extender. For example the table DTD_REF contains information about DTD files.

The next step is to enable the XML collection. That is not a necessary step. To enable the
XML collection we need to have a DAD file. The DAD file is specified when enabling an
XML collection. The DAD file can contain information on how to compose XML documents
from the XML collection and how to decompose XML documents into the XML collection. If
the XML collection is not enabled, then the DAD file must be specified every time an XML
document is to be composed or decomposed.

In this exercise we will just specify rules for composition of XML documents in the DAD file
and we will enable the XML collection.

First we need to create a DAD file. To do that we need to know how we want the XML
document to be structured and where all the XML data are stored in the database. In other
words we need to define the XML document structure and map it to the XML collection
tables and columns.

37

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Here is the structure for the XML documents that we want to compose:

@

A
Contestant |

S>> SO B

Figure 5 Structure of elements and attributes for the XML documents

The Race element will be the root element of the XML documents. The Race element
consists of two attributes (Date, Distance) and one element (Contestant). The Contestant
element can appear several times within a Race element. Each Contestant element has three
attributes (Clubname, Time, Status) and two elements (Rider, Horse), which in turn have
two and three attributes respectively.

An XML document with that structure would look like this:

<?xml version="1.0" standalone="yes"?>
<IDOCTYPE Race SYSTEM "">
<Race Date="2001-06-05" Distance="1000">
<Contestant Clubname="Appaloosa Horse Club" Status="finished" Time="00:02:02">
<Rider Name="Bill Spawr" Weight="48"></Rider>
<Horse Name="Lake William" Weight="461" Birthyear="1993"></Horse>
</Contestant>
<Contestant Clubname="Horseriders" Status="finished" Time="00:02:02">
<Rider Name="Warren Stute" Weight="55"></Rider>
<Horse Name="Magellan" Weight="471" Birthyear="1995"></Horse>
</Contestant>
<Contestant Clubname="Wild Horse Club" Status="walkover">
<Rider Name="Simon Bray" Weight="53"></Rider>
<Horse Name="Spinelessjellyfish" Weight="493" Birthyear="1989"></Horse>
</Contestant>
</Race>

38

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Creating a DAD file, with the mapping for the transformation from XML data stored in the
XML collection into XML documents, is a little more complicated. In the DAD file that we
will create we will use SQL mapping. SQL mapping works as follows:

“SQL mapping allows simple and direct mapping from relational data to XML documents
through a single SQL statement... SQL mapping is used for composition; it is not used for
decomposition...The SQL_stmt maps the columns in the SELECT clause to XML elements or
attributes that are used in the XML document. When defined for composing XML documents,
the column names in the SQL statement’s SELECT clause are used to define the value of an
attribute_node or a content of text_node. The FROM clause defines the tables containing the
data; the WHERE clause specifies the join and search condition.” (XML Extender
Administration and Programming).

In addition to that, the SQL statement must contain an ORDER BY clause, where the columns
that identify the rows uniquely must be listed. The column names listed in the SELECT clause
must be unique, if two columns have the same name then one of them must be renamed using
the AS statement (example: SELECT address, address AS address?2 ...).

Before we start with the structure we defined above, let’s look at a simpler case!

Here is a simple example of a valid SQL statement:

SELECT cname, address FROM club ORDER BY cname

Cname is the primary key of the club table, therefore it appears in the ORDER BY clause.

It is then possible to place the values of the columns into elements or attributes of the XML
document. Here is how it’s done:

To get an element Club we define (in the DAD file) the following tag:

In the DAD file: Will produce in the XML document:
<element_node name="Club"> <Club>
</element_node> </Club>

To get an attribute address in the Club element:

In the DAD file: Will produce in the XML document:
<element_node name="Club"> <Club address: ">
<attribute_node name="address"> </Club>

</attribute_node>
</element_node>

39

Department of Computer
And Systems Sciences
SU/KTH

nikos dimitrakas

DB2 & XML Labv. 3.3
1S4/2i1242/2i4042 spring 2004
Models and languages for object,
relational and web databases

Stockholm
August 2007

To add a value to the address attribute from the SQL statement:

In the DAD file:

<element_node name="Club">
<attribute_node name="address">
<column name="address"/>
</attribute_node>
</element_node>

Will produce in the XML document:

<Club address: "my address">
</Club>

To add a value to the Club element from the SQL statement:

In the DAD file:

<element_node name="Club">
<attribute_node name="address">
<column name="address"/>
</attribute_node>
<text_node>
<column name="cname"/>
</text_node>
</element_node>

Will produce in the XML document:

<Club address: "my address">
My club
</Club>

So if we put all this (and a little more) together, we should have a DAD file:

First we start with two XML lines. DAD files
are also XML files, that follow the rules
specified in a DTD file (dad.dtd).

The DAD element is the root element of any
DAD file.

Validation is applicable only when the DAD
file is used for decomposition, therefore we
set it to NO.

The Xcollection element is where all our
code is placed.

The SQL statement is placed within an
element called SQL_stmt

These lines make sure that the resulting XML
document contains standard XML lines. The
DOCTYPE has to always match the root
element of the XML document, therefore we
set it to Club.

This is to define the root element of the
resulting XML document

40

<?xml version="1.0"?>
<IDOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">

<DAD>

<validation>NO</validation>

<Xcollection>

<SQL_stmt> SELECT cname, address FROM
club ORDER BY cnhame </SQL_stmt>

<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Club SYSTEM "'</doctype>

<root_node>

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

This is the structure of elements and <element_node name="Club">

attributes that we have defined <attribute_node name="address">
<column name="address"/>

</attribute_node>
<text_node>
<column name="cname"/>
</text_node>
</element_node>

These are the end tags of all the elements </root_node>
</Xcollection>

</DAD>
Now that the DAD file is ready we can enable the XML collection. The DAD file must be
saved as a file with the extension DAD (for example as D:\xmltemp\club.dad). In the DB2
Command Window we can execute the following command.

dxxadm

A response with the correct syntax of the dxxadm command comes up:

i |DB2 CLP o [m| 4
tSSQLLIBSBIMN>dxxadm ﬂ
zage =

wxadm [enahle_dh dhname <-1 wserid —p passwvord> 1
xxadm [dizable_db dbname <-1 uszerid —p password> 1
xxadm [enable_column dbname tabname column dad_file
<—t tablespace> {—v default wiew> <-» root_id> {-1 userid —p password>]
xxadm [diszable_column dbname tabname column <-1 userid —p password> 1
xxadm [enable_collection dbname collectionMame dad_file
{£—t tablespace?> <{-1 userid -p password>]
wxxadm [disable_collection dbname collection 4<-1 wserid —p password> 1

SSQLLIBNBIN

=
Now for the complete command that enables an XML collection:
dxxadm enable_collection riding clubcollection D:\xmltemp\club.dad
| DB2 CLP =101 x|

B|

F
SEQLLIBSBIM>dxxadm enable_collection riding clubcollection D:sxmltempclub.dad—
HHABB2I Connecting to database riding.
HEAB63I Enabling collection clubcollection. Please Wait.
XEAB6YTI HML Extender has succeszsfully enahled collection clubhcollection.

SSQLLIB-BIMN>

A

Clubcollection is the XML collection’s name, there can be more than one XML collection
enabled on the same database.
D:\xmltemp\club.dad is the location of the DAD file.

41

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

When the XML collection was enabled, a new row was created in the XML_USAGE table.
The new row contains information about the XML collection (the collection name, the DAD
file etc).

Note that if for some reason the DAD file needs to be altered, it is not enough to change the
file. The XML collection should be disabled (dxxadm disable command) and then enabled
with the altered DAD file. It is only then that the XML collection sees the changes!

Extracting XML documents can be done with the retrieve command. Try to execute the
following command in the Command Window to get more information about the retrieve
command:

retrieve

i DB2 CLP -10] x|
C:\SQLLIB\BIN>retrieve -
Usage: retrieve dbname collectionname result_tabname [max_ndocsi{—o0 overrideTupe
override?]

C:sSQLLIBABIN:

=l

The retrieve command requires a result_tablename argument. It is this table that the XML
document(s) are going to be stored in. Before we can execute the retrieve command
successfully, we have to define a new table to receive the results. Here is a table definition:
CREATE TABLE results(xmldoc DB2XML.XMLVARCHAR)

DB2XML.XMLVARCHAR is a user defined type that comes with the XML extender. This

type is similar to VARCHAR. We use this type because it is compatible with XML extender
user defined functions that we will use later.

e Create a table according to the definition above! You may need to connect to the database
first with the command connect to riding.

When this table has been created, it can be used as a result table for the retrieve command.
Here is the complete retrieve command:

retrieve riding clubcollection results

42

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases
_lol x|
B20AAAT The S5QL command completed successfully. _:J
ASQLLIBBIN>retrdieve piding clubcollection results -
-8
onnecting to database riding
n=5:8
errCode=MA:A
megtext’ DEXQBZAI HML successfully generated.
il :B
:N\SQLLIBN\BIN>_ Ad|

The XML documents (5 documents: n=5.0) that have been composed should be stored in the

results table. You can easily check the contents of the results table by executing the
following SQL statement:

SELECT * FROM results

B Command Center oy] 4
Command Center QueryResults Edit Tools Help b &
» B 0P E YIUE @E Bs &3
Interactive | Script Query Results | Access Plan |

Ferform required changes and then click the commit update buttan.

HMLDOC
=il wersion="1.0"?=00<1DO0CTYPE Club SYSTEM "™=00=Club address="2720W. Pullman Foad "=Appaloosa Harse Club=iClubs=
=Mmlwersion="1.0"?=00=100CTYPE Club SYSTEM ™ =00=Club address="Atlantic City South"=Harseriders=iCluh=
=7mil yergion="1.0"?=00=IDOCTYPE Club SYSTEM " =00=Club address="6293 Camphellsville Pike"=Morgan Horse Club=/Club=
=Mml version="1.0"?=00=<IDOCTYPE Club SYSTEM " =00=Cluh address="Redwond City'=Riders Club=/Club=
=ml wersion="1.0"?=00=<ID0CTYPE Club SYSTEM "™ =00=CIub address="Bonneville Basin'=wild Horse Club</Club=

I et Rows in memory 5 [1- 5]

[Automatically commit updates Commit Update | Rollback |

Let’s go back now to the more complicated structure (from page 38), and create a DAD file.

43

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

First we must have an SQL statement that returns all the columns that we need for the XML
elements and attributes. The following SQL statement returns those columns:

SELECT date(race.racetime) as racedate, race.distance, clubname, finishingtime,
status, rname, r.weight AS rweight, hname, h.weight AS hweight, birthyear

FROM race, horse AS h, rider AS r, contestants AS ¢

WHERE race.raceid = c.raceid

AND ridername = rname

AND clubname = Memberclub

AND clubname = ownerclub

AND horsename = hname

This is a valid SQL statement but it is not valid as a DAD SQL statement. A DAD SQL
statement requires an ORDER BY clause that should contain the column that can identify
uniquely each entity. That is, one column for each entity. This facility of DB2 XML extender
IS quite new and it may appear to behave inconsistently. Not all entities’ identifiers need to be
part of the ORDER BY clause, only the ones that lead to a level where many elements of the
same type can appear. To make that more understandable we can look at our structure and the
entities that exist:

,\
o

S

Figure 6 Entities of the XML structure

L J

44

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

In this structure each entity is associated with one table. So the unique identifier for each
entity is the primary key (or a candidate key) of the associated table. Now there is one
problem remaining. There can only be one column that identifies uniquely an entity, but the
tables contestant, rider and horse require more than one column to identify a row uniquely.
(Of course we only need to include the unique identifier of the tables race and contestant.
The tables rider and horse produce only one entry per contestant, while there can be several
contestants per race.) One way to solve this problem is to use the table expression and the
generate_unique() function to produce a single column unique identifier®. After making all
these changes in the SQL statement, it should look like this:

SELECT race.raceid, date(race.racetime) AS racedate, race.distance, cid, clubname,
status, finishingtime, rname, r.weight AS rweight, hname, h.weight AS hweight,
birthyear

FROM race, table(SELECT generate_unique() as cid, raceid, ridername, clubname,
horsename, finishingtime, status FROM contestants) AS c, rider AS r, horse AS h
WHERE race.raceid = c.raceid

AND ridername = rname

AND clubname = memberclub

AND clubname = ownerclub

AND horsename = hname

ORDER BY raceid, cid

Creating the element and attribute structure of the XML document is not different from
before.

We start with the root element and we continue deeper into the structure.

The root element is the Race element.

Definition in DAD file Produces in XML document
<element_node name="Race"> <Race>
</element_node> </Race>

Now for the attributes of the Race element.

Definition in DAD file Produces in XML document
<element_node name="Race"> <Race Date="" Distance="">
<attribute_node name="Date"> </Race>

</attribute_node>

<attribute_node name="Distance">

</attribute_node>
</element_node>

% In certain cases this technique may not work. In those cases we may need to create a unique identifier for
an entity in a different way, for example by concatenating the components of the primary key.

45

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Now for the Contestant element which can exist several times within a Race element.

Definition in DAD file Produces in XML document

<element_node name="Race"> <Race Date="" Distance="">
<attribute_node name="Date"> <Contestant>
</attribute_node> </Contestant>
<attribute_node name="Distance"> <Contestant>
</attribute_node> </Contestant>
<element_node name="Contestant"

multi_occurrence="YES">
</element_node> .
</element_node> </Race>

After adding the rest of the elements and attributes of the structure we should have the
following:

<element_node name="Race">
<attribute_node name="Date">
</attribute_node>
<attribute_node name="Distance">
</attribute_node>
<element_node name="Contestant" multi_occurrence="YES">
<attribute_node name="Clubname">
</attribute_node>
<attribute_node name="Status">
</attribute_node>
<attribute_node name="Time">
</attribute_node>
<element_node name="Rider">
<attribute_node name="Name">
</attribute_node>
<attribute_node name="Weight">
</attribute_node>
</element_node>
<element_node name="Horse">
<attribute_node name="Name">
</attribute_node>
<attribute_node name="Weight">
</attribute_node>
<attribute_node name="Birthyear">
</attribute_node>
</element_node>
</element_node>
</element_node>

The last thing to do is to place the values from the SQL statement in the structure. It is
important that the order that the values appear in the SQL statement is the same with the order

46

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

that they appear in the XML structure (even though there can be columns in the SQL
statement that do not appear in the XML structure). When that is done, all the parts of the
DAD file are done. By putting them together (and changing the XML declaration and the
DOCTYPE element of the resulting XML document) we should get this:

<?xml version="1.0"?>
<IDOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">
<DAD>
<validation>NO</validation>
<Xcollection>
<SQL_stmt>
SELECT race.raceid, date(race.racetime) as racedate, race.distance, cid, clubname,
status, finishingtime, rname, r.weight AS rweight, hname, h.weight AS hweight,
birthyear FROM race, table(SELECT generate_unique() as cid, raceid, ridername,
clubname, horsename, finishingtime, status FROM contestants) AS c, rider AS r,
horse AS h WHERE race.raceid = c.raceid AND ridername = rname AND clubname
= memberclub AND clubname = ownerclub AND horsename = hname ORDER BY
raceid, cid
</SQL_stmt>
<prolog>?xml version="1.0" standalone="no"?</prolog>
<doctype>!DOCTYPE Race SYSTEM "d:\xmltemp\race.dtd"</doctype>
<root_node>
<element_node name="Race">
<attribute_node name="Date">
<column name="racedate"/>
</attribute_node>
<attribute_node name="Distance">
<column name="distance"/>
</attribute_node>
<element_node name="Contestant"” multi_occurrence="YES">
<attribute_node name="Clubname">
<column name="clubname"/>
</attribute_node>
<attribute_node name="Status">
<column name="status"/>
</attribute_node>
<attribute_node name="Time">
<column name="finishingtime"/>
</attribute_node>
<element_node name="Rider">
<attribute_node name="Name">
<column name="rname"/>
</attribute_node>
<attribute_node name="Weight">
<column name="rweight"/>
</attribute_node>
</element_node>
<element_node name="Horse">

47

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

<attribute_node name="Name">
<column name="hname"/>
</attribute_node>
<attribute_node name="Weight">
<column name="hweight"/>
</attribute_node>
<attribute_node name="Birthyear">
<column name="birthyear"/>
</attribute_node>
</element_node>
</element_node>
</element_node>
</root_node>
</Xcollection>
</DAD>

The DAD file contains information about the XML declaration and the DOCTYPE element of
the XML documents to be composed. This information is the following:

The XML document is composed according to XML version 1.0 and it is not standalone (it
is associated to a DTD file):

<prolog>?xml version="1.0" standalone="no"?</prolog>

The DOCTYPE of the XML document is Race. That means that the root element of the
XML document is an element called Race. The SYSTEM specifies that the XML document
is supposed to follow the rules in the DTD file d:\xmltemp\race.dtd:

<doctype>!DOCTYPE Race SYSTEM "d:\xmltemp\race.dtd"</doctype>

The file d:\xmltemp\race.dtd does not exist yet. In chapter 5.4 we will create this DTD file
and we will use the XML documents composed with this DAD file.

Assuming that the DAD file has been saved as d:\xmltemp\race.dad we can enable an XML
collection called racecollection by submitting the following command in the Command
Window:

dxxadm enable_collection riding racecollection d:\xmltemp\race.dad

i DB2 CLP -10] x|

SNESQLLIBSBIN>dxxadm enahbhle_collection riding ra e-c:ullec:tiun d:\xmltemp\race.dadﬂ

HHABB2I Connecting to database riding.
HHEAB63]I Enabling collection racecollection. Please Wait.
HEABG?I HML Extender has successfully enabled collection racecollection.

SSQLLIBNBIN

48

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

When the new XML collection has been enabled, use the retrieve command to compose
XML documents and place them in the results table (You may want to remove the previous
XML documents from the results table first) :

retrieve riding racecollection results

= |DBZ CLP =101 |
C:~SQLLIB~BIN>retrieve riding racecollection results :J
m:8
Connecting to database riding

n=5:A

errCode=MA:8
i Esgtext‘DHHQBEBI HML successfully generated.
C:\SQLLIBNBIND_ hd

Five XML documents are now stored in the table results.

5.3 Extract XML documents into XML files

So far we have composed XML documents and stored them in a table. It can be desired to
extract these XML documents from the database and keep them as separate files. To do that
we will use the XML extender’s Content function.

Like all other functions, the Content function can be used in a SELECT statement. The
Content function has three different sets of parameters. The one that we will use is the
following:

Content(xmlobj, filename)

xmlobj is the XML document as an XMLVARCHAR.

Filename is a string with the fully qualified filename and location of the file where the XML
document will be saved.

When this function is executed it returns the filename to where the XML document was
saved.

Here is an example of how to use this function:

SELECT db2xml.Content(xmldoc, 'd:\xmltemp\my.xml") FROM results

This command produces a file called d:\temp\my.xml which contains the XML document
that is stored in the xmldoc column of the results table. The problem with this command is
that it tries to save each and every XML document from the xmldoc column as a file called

d:\temp\my.xml. Consequently only the last XML document gets saved. The next figure
shows what this command returns:

49

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

181 x]
Command Center Interactive Edit Tools Help |

» D OBEATAE DD BE& @3

Interactivel Scrit] Query Resuts| Access Plan |

Database connection

[LocaL- DB2- RIDING [
Command histone
IBELECT db2xml. Contentixmidoc, 'dmitempimyxmly FROM results; LI
Command
SELECT db2xml.Contentiemldac, 'diwmiternpirmyxm!?) FROM results i SGL Assist |
Append to Script |
-
S - S T e =

SELECT dbZxwl.Content (xmldoc, 'd:i‘xmltempimy.xml') FROM results

:

d:vxnl tenphuwy . xnl
d:rvxml cempimy. xnl
d:vxml tenp oy, xnl
divxml tenp oy, xnl

d:vxnl cenphuy. xul

5 record(s) selected.

=
| |]

An easy way to produce unique names for all the XML files saved, is to use the
generate_unique() function to produce the filename:

SELECT db2xml.Content(xmldoc, (‘'d:\xmltemp\my" CONCAT
HEX(generate_unique()) CONCAT '.xml')) FROM results

This command will produce a unique key for every row in the results table, and then

concatenate a hexadecimal representation of that unique key into the filename. The next
figure shows a result of this command:

50

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

=181 x]
Corrand Certer Interactive Edit Tools Help Ny |

2 D ORI QAOEE 3E B& @O
Interactivel Scrit] Query Resuts| Access Plan |
Database connection

[LocaL- DB2- RIDING [
Command histone
|BELECT db2eml. Contentixmidoc, (dwmitempimy' CONCAT HEX({generate_uniqued) CONCAT 'xml}) FROM results; L]
Command
SELECT db2xml.Contentiernldac, {'dwmitempimy’ CONCAT HEX{generate_unique) CONCAT "xmlh FROM results| o SGL Assist |
Append to Script |
|
T TR T T e T T I R T S TR T mE TR L ST I T G e T S R R T TR T ITTTT TETRITTT =

SELECT dbZxml.Content (xmldoc, {'d:‘\xmltemp'my' CONCAT HEX(generate_unicque()) CONCAT '.xml')) FROM results

:

divxul cenp\uyZ0020718200506784544000000. xnl
d:vxml remp uyZ0020718200506907315000000. xm1
divxul cenp \uy200207182005060247453000000. xnl
divxunl cenp i uyZ0020718200506959108000000. xnl

divxunl cenpuyZ0020718200506978839000000. xnl

5 record(s) selected.

-
d | e

The files are now stored on the hard disk and can be viewed with any editor, attached to an
email, etc.

5.4 Store XML documents in an XML column

In this section we will create an XML column and store in it the XML documents that we
generated before. This is basically the same procedure that we followed in section 3.1 when
we created a database and stored in it the XML documents for the books. In this section we
will look closer and in more detail at how the procedure works. We will do the following:

Create a database with a table where the XML documents will be stored
Enable the database for XML

Prepare a DTD for controlling the incoming XML documents

Store the DTD in the DTD_REF table

Prepare a DAD file for the XML column

Enable the XML column

Insert XML documents into the XML column

NogkrwdpE

e Start by creating a database! You will need to disconnect from the other database if you
are still connected. Use the command disconnect riding.

Here is a command that creates a database:

CREATE DATABASE myxmilcol

51

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

The database is now ready to be enabled for XML.

e Enable the database for XML by issuing the following command in the Command
Window:

dxxadm enable_db myxmicol

e Connect to the new database and create a table for the XML documents! The table should
have a column of one of the three XML extender data types (XMLVARCHAR,
XMLCOLB, XMLFILE). Here we use XMLVARCHAR.

CONNECT TO myxmicol
CREATE TABLE xmicol (xmldoc DB2XML.XMLVARCHAR)

Note that this table can contain many other columns. Those columns do not interfere with
the XML column.

When an XML document is inserted into the database, it has to be controlled. If there is no
control of incoming XML documents, the database will soon become corrupt. To control an
XML document we need a set of rules of what is and is not allowed. Those rules can be
defined in a DTD file.

Before defining a DTD, we must know the exact structure of the XML documents that we
want the DTD file to control (and accept). The XML documents that we want to insert into
the XML column, are the ones we created earlier from the XML data in the XML collection.
So the structure is already defined.

Now let’s create a DTD file to represent that structure.

First we have a Race element. <IELEMENT Race>

The Race element has a sub-element called <!ELEMENT Race (Contestant*)>
Contestant, that can occur zero or more

times (denote this with an asterisk after the
element name).

The Race element has two attributes (Date | <!ELEMENT Race (Contestant*)>
and Distance). <IATTLIST Race

Date CDATA #REQUIRED
Distance CDATA #REQUIRED>

We continue with the Contestant element. <I[ELEMENT Contestant>

The Contestant element has two sub- <!IELEMENT Contestant (Rider, Horse)>
elements called Rider and Horse, that can

occur once and only once within a

Contestant element.

52

Department of Computer
And Systems Sciences
SU/KTH

nikos dimitrakas

The Contestant element has three attributes
(Clubname, Status and Time) The first two
have to be there, the third can be missing.
Status can only be one of four predefined
values: finished, walkover, disqualified and
dropout.

The Rider element. The Rider element has no
content.

The Rider element has two attributes (Name
and Weight). Name is required, Weight is
not.

The Horse element. The Horse element has
no content
The Horse element has three attributes
(Name, Weight and Birthyear). Only Name
is required

DB2 & XML Labv. 3.3
1S4/2i1242/2i4042 spring 2004
Models and languages for object,
relational and web databases

Stockholm
August 2007

<IELEMENT Contestant (Rider, Horse)>
<IATTLIST Contestant

Clubname CDATA #REQUIRED

Status (finished | walkover | disqualified
| dropout) #REQUIRED

Time CDATA #IMPLIED>

<IELEMENT Rider EMPTY>

<IELEMENT Rider EMPTY>
<IATTLIST Rider
Name CDATA #REQUIRED
Weight CDATA #IMPLIED>

<IELEMENT Horse EMPTY>

<I[ELEMENT Horse EMPTY>
<IATTLIST Horse
Name CDATA #REQUIRED
Weight CDATA #IMPLIED
Birthyear CDATA #IMPLIED>

e Put all the elements together and save the file, for example as d:\xmltemp\race.dtd

Here is the content of the file race.dtd:

<IELEMENT Race (Contestant*)>
<IATTLIST Race

Date CDATA #REQUIRED

Distance CDATA #REQUIRED>
<IELEMENT Contestant (Rider, Horse)>
<IATTLIST Contestant

Clubname CDATA #REQUIRED

Status (finished | walkover | disqualified | dropout) #REQUIRED

Time CDATA #IMPLIED>
<IELEMENT Rider EMPTY>
<IATTLIST Rider

Name CDATA #REQUIRED

Weight CDATA #IMPLIED>
<IELEMENT Horse EMPTY>
<IATTLIST Horse

Name CDATA #REQUIRED

Weight CDATA #IMPLIED

Birthyear CDATA #IMPLIED>

Now we can insert the DTD file into the DTD_REF table (which was created when we

enabled the database for XML).

53

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Execute the following INSERT statement, to insert the DTD file into the DTD_REF table of
the database:

INSERT INTO db2xml.DTD_REF VALUES (‘'d:\xmltemp\race.dtd’,
db2xml. XMLClobFromFile('d:\xmltemp\race.dtd"), O, 'userX', 'userZ', 'userY")

The first value specifies a name for the inserted DTD file, this is also the primary key of the
DTD_REF table. It is usual to set the fully qualified name of the file as this value.

The second value is the DTD file itself. This value has to be of XMLCLOB type, hence we
use the XML extender’s function XMLClobFromFile to import the DTD file into an
XMLCLOB.

The third value (called USAGE_COUNT) shows how many DAD files refer to this DTD file.
It has to always be set to O when a DTD file is first being inserted.

The rest of the parameters are optional and specify the following: AUTHOR, CREATOR,
UPDATOR.

When a DTD file has been inserted into the DTD_REF table, it can be referenced by DAD
files associated with XML columns or XML collections in the database in question.

Note that as with DAD files, if the DTD file has to be altered then it is not enough to change
the file. The row for the old DTD has to first be removed from the DTD_REF table. If the
DTD is in use then the XML column or XML collection that is using it has to first be
disabled. It is always possible to see if a DTD in the DTD_REF table is in use by checking the
usage_count value for a specific DTD.

We can now define the DAD file for the XML column. The DAD file will contain a reference
to the DTD file and information about the side tables. It is not important to have side tables
but we will use one side table to illustrate how this feature works. We will have a side table
with two columns: Date and Distance.

The DAD file starts, as before, with the following lines:

<?xml version="1.0"?>

<IDOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd">

<DAD>

Then we have an element called dtdid, where we define the DTD to be used to control
incoming XML documents:

<dtdid>d:\xmltemp\race.dtd</dtdid>

Then the validation element, in this case we set the validation to YES. This activates the
control of the incoming XML documents:

<validation>YES</validation>

Now we have the Xcolumn element:

54

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

<Xcolumn>

Within this element we can specify the side tables (in this case only one side table), and the
mapping between elements or attributes and the columns of the side tables. In this way the
side tables will be automatically updated every time a new XML document is inserted. Here is
the content of the Xcolumn element:

A table element with a name attribute. Thatis <table name="race_st">
the name of the side table.

A column element for each column of the side <column name="Racedate”

table. The name attribute indicates the name of type="date”

the column, the type attribute indicates the data- path="/Race/@Date”
type of the column, the path attribute indicates multi_occurrence="NO"/>
where in the XML document’s structure to get

the value from, the multi_occurrence attribute <column name="Racedistance”
indicates whether or not the specified path can type="integer”

appear many times within an XML document. path="/Race/@Distance”
(Note that an empty element can be closed with multi_occurrence="NO"/>

a “/” in the end of the opening tag)

And the closing tag of the table element. </table>

And of course the closing tags of the Xcolumn element and the DAD element:

</Xcolumn>
</DAD>

e Now save the DAD file (for example d:\xmltemp\racecolumn.dad)!
e Enable the XML column! Here is the command:
dxxadm enable_column myxmlcol xmlcol xmldoc d:\temp\racecolumn.dad

where myxmicol is the database name, xmicol is the name of the table and xmldoc is the
name of the column in the table.

& | DB2 CLP =101 x|

:ESQLLIB\BIH)dxxadm enable_column myxmlcol xmlcol xmldoc d:\xmltemp\raceculumn.ﬂ

a

HHEABB2]I Connecting to databasze myxmlcol.
HHEABBAI Enabling column xmldoc. Please Wait.
HHAB22] Column xmldoc enabled.

SSQLLIBNBIN

55

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Now that the XML column has been enabled, we can insert XML documents into it. To insert
an XML document we can execute an INSERT statement. When inserting an XML document
into a column of a table, we must always think of the data type of the column. The column, to
which we will insert the XML documents is of the following type:
DB2XML.XMLVARCHAR. Fortunately, there is a set of functions for transforming XML
documents to and from all the different XML data types. One of those functions is this:
DB2XML.XMLVarcharFromFile(). This function takes one argument: the full filename as a
string and returns the content of that file (the XML document) as an
DB2XML.XMLVARCHAR. Here is an example of an INSERT statement:

INSERT INTO xmlcol (xmldoc) VALUES
(DB2XML.XMLVarcharFromFile(‘*d:\xmltemp\my20000603132654013484000000.xml’

)

The file d:\xmltemp\my20000603132654013484000000.xml is just one of the files we
generated before (see section 5.3). The filenames are random, so the files that you have, have
different filenames from the filenames that appear in section 5.3.

When the XML document has been inserted into the database, the side tables have also been
updated. In our case there should be one new record in the race_st table.

After inserting all five XML documents in the XML column the content on the side table is
following:

56

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

B Command Center =100 x]
Command Center Interactive Edit Tools Help _\Lﬂmﬂ

o HPEITIE @BEH Bi: @O

|meraﬁﬂ\f9| Script| Query Results | Access Plan |
Database connection

|LocaL- pez- |
Command histary
Iselect*frum race_st; :I
command

select™ from race_st il S0L Assist |

Append to Script |

[

select * from race st

D¥RO0T_ID RACEDATE RACEDISTANCE
X' 2002071620362517a6562000000" 0572372000 1000
¥'200207182036804379550000000" 0941372000 1500
¥'200207182035806957059000000" 0272472001 2000
¥'200207182035809799449000000" 0440272000 1000
¥'2002071820368138058516000000" 0670572001 1000

5 recordis) selected.

-
4 | o

If the XML document does not comply with the DTD file, specified in the DAD file, then it

will be rejected. That can easily be tested; try to insert an XML document with the wrong type

of elements or attributes.

57

Department of Computer DB2 & XML Lab v. 3.3 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2004 August 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Here is what happened when an invalid XML document was inserted into the XML column:

B Command Center -0 x|
Command Center Interactive Edit Tools Help “\.ﬂﬁ'@j

» B EBESTUE B2E Ba& 4o
|ﬂTEFBETi\fE| Script| Query Results | Access Plan|

Database connection

|LocaL- pB2- |
Command history
IINSERT INTO gmilcol gmildoc) WALUES (DBZEML XML archarFromFiledd:smtempibad xmif); LI
command
IMEERT IMNTO xmilcal xmildoc) WALLUES (DEIE}{ML.}{MLVarcharFrnmFiIe('d:MmItemplhad.xml')}l;l S0L Assist |
ﬂ |_'|;I Append to Script |
[

—————————————————————————————— Command Entered -—-—------———————m

INSERT INTO xmlcol (xmldoc) VALUES (DEZ2XML.XMLVarcharFromFile('d:\xmltempibad.xml')):
INSERT INTO =mlcol (xmldoc) VALUES (DEZXML.XMLVarcharFromFile|'d:‘\xmltenpibad.xml'))
DEZ1034E The command was processed as an 30L statement because it was not a

valid Command Line Processor command. During S0L processing it returned:

S0LO438N Application raised error with diagnostic text: "DXXDO0O0E An inwalid

¥NML document is rejected. . SQL3TATE=35X14

Kl | _'IEI

An XML document is rejected when:

e The element structure is not as specified in the DTD file

e The attributes of the elements are not following the rules of the DTD file

e The SYSTEM of the XML document (specified in the DOCTYPE element) is not the
same as the one in the DAD file. Both should point to the same DTD file.

On the other hand an XML document that is defined as standalone (in the XML declaration)
can be accepted if it does not break any of the rules above.

The XML column can now be queried in the way we saw in section 4.2.

6 Internet Resources

XML & DTD Tutorials

http://LL238.dsv.su.se/tutorial

http://www.w3schools.com/xml/default.asp

58

Department of Computer DB2 & XML Lab v. 3.3

And Systems Sciences 1S4/2i1242/2i4042 spring 2004
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

http://www.spiderpro.com/bu/buxmim001.html

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/xmlsdk/htm/xml_devgd_overview 91b9.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/xmlsdk/htm/xmlschemas_overview_2u9f.asp

DB2 XML extender

http://www-4.ibm.com/software/data/db2/extenders/xmlext/

7 Epilogue

Stockholm
August 2007

When all this is done, you should have quite a good understanding of how to use DB2 to

manage XML documents and XML data.

I hope you have enjoyed this compendium. Please give me feedback!

The Author

ot dimitral

59

