
DEPARTMENT OF COMPUTER
AND SYSTEMS SCIENCES
SU / KTH

DB2 & XML
v. 4.0.1

IS4/2i1242/2i4042

Models and languages for object,

relational and web databases

Spring Term 2007

http://www.nikosdimitrakas.com/courses/IS4/

nikos dimitrakas

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 2

Table of contents
1 Introduction ...3

1.1 Homepage.. 3
1.2 The environment... 3
1.3 Completed Assignment Requirements.. 3

2 XML & DB2...4
2.1 XML... 4
2.2 XML in DB2.. 6

3 Databases ...7
3.1 Books.. 7
3.2 Horse riding .. 10

4 Compulsory Exercises and Assignments ..11
4.1 XML specific functions .. 11

4.1.1 Path.. 12
4.1.2 Extract functions.. 13
4.1.3 Update function ... 15
4.1.4 Functions for generating XML - XML/SQL functions.. 15

4.2 Queries against the XML column explained.. 16
4.2.1 Retrieving data .. 16
4.2.2 Manipulating data.. 33

4.3 Queries that produce XML explained .. 35
4.4 Assignments... 44

5 Voluntary Exercises...44
5.1 Create the database .. 44
5.2 Enable the database for XML (as an XML collection) and compose XML documents............... 45
5.3 Extract XML documents into XML files.. 57
5.4 Store XML documents in an XML column.. 58

6 Internet Resources...66

7 Epilogue ...66

Table of figures

Figure 1 XML and DTD...4

Figure 2 Main components of XML in DB2 ...7

Figure 3 XML structure for the Book XML files ..8

Figure 4 Database model of horse riding database ..10

Figure 5 Structure of elements and attributes for the XML documents ..46

Figure 6 Entities of the XML structure ...52

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 3

1 Introduction
This compendium contains the following:
• An introduction to XML
• An introduction to DB2’s facilities for handling XML data
• Compulsory exercises on using DB2 for querying and manipulating XML data, as well as

producing XML as the result of SQL statements
• Voluntary exercises on using DB2 to transform relational data to XML data

It is strongly recommended that you read through the entire compendium (except from chapter 5)
before starting to work with the exercises.

1.1 Homepage
Information about this compendium can be found here:
http://www.nikosdimitrakas.com/courses/IS4

The following can be found at this address:
• FAQ - Here there is a list of corrections and explanations that come after the course start.
• Links - Internet resources that can be helpful when working with the compendium.
• Files - The newest version of the compendium and all the files needed to complete the exercises

in the compendium (not the solutions of assignments). These files are also available under
\\DB-SRV-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML

1.2 The environment
The following facilities will be used:

• IBM DB2 Universal Database version 8.2 fp9a, with XML extender

 DB2 Command Window
 DB2 Command Editor
 DB2 Information Center

 Editor (of your choice)
 Web browser

More information on DB2 and its facilities can be found in the compendium “Introduction to IBM
DB2 v.8.2 fp9a for Microsoft Windows XP Professional”.

1.3 Completed Assignment Requirements
All the exercises in chapter 4 are compulsory. For the assignments in section 4.4 you have to
send in electronically to the conference “MLDB Assignments” in FirstClass the following:

1. SQL statements for all the queries.
2. Execution results for the first 6 queries.

Don't forget to mention the group number and the names of all the group participants.

The deadline for this assignment is the 30th of March 2007.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 4

2 XML & DB2
This chapter introduces XML and DB2’s facilities for working with XML. This is not a complete
reference of either XML or DB2’s XML extender. The following sections only present the aspects
of XML and DB2 that are needed to complete the exercises that follow.

2.1 XML
XML (eXtensible Markup Language) is a language with many uses. One of them is to transport
data between different systems.
XML consists of two languages, one language for the actual XML documents and one language for
specifying how the XML documents1 should be structured, called DTD2 (Document Type
Definition). Not all XML documents are associated to DTDs. Here is an example of an XML
document and its DTD:

XML Document (saved in a file called “book.xml”) DTD (file “book.dtd”)
<?xml version="1.0"?>
<!DOCTYPE book SYSTEM "d:\dtd\book.dtd">
<book>
 <chapter id="1" date="07/01/1997">
 <section>This is a section in Chapter One.</section>
 </chapter>
 <chapter id="2" date="01/02/1997">
 <section>This is a section in Chapter Two.</section>
 <footnote>A footnote in Chapter Two is here.</footnote>
 </chapter>
 <price date="12/22/1998" time="11.12.13" timestamp="1998-12-22-11.12.13">
 38.281
 </price>
</book>

<?xml encoding="US-ASCII"?>
<!ELEMENT book (author*,chapter*,price)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT chapter (section*, footnote*)>
<!ATTLIST chapter id (1|2|3) #REQUIRED
 date CDATA #IMPLIED>
<!ELEMENT price (#PCDATA)>
<!ATTLIST price date CDATA #IMPLIED
 time CDATA #IMPLIED
 timestamp CDATA #IMPLIED>
<!ELEMENT section (#PCDATA)>
<!ELEMENT footnote (#PCDATA)>

 Both languages are case sensitive!

DTD
rules for

XML
document

XML
document

Figure 1 XML and DTD

An XML document can refer to a DTD file.
A DTD file can be associated with many XML
documents. When an XML document refers to a
DTD file then the XML documents content is
supposed to follow the rules defined in the DTD
file.

2.1.1 XML Explanation
Elements:

In the previous example chapter is an element. Everything from the <chapter> to the
</chapter> constitutes an element chapter.

1 The term XML document refers to a file with the extension .xml.
2 DTD is the older language for defining XML structures. Another “newer” language is XMLSchema, which is
somewhat more powerful than DTD.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 5

Every XML document must have a root element, an element that has its start tag in the beginning
of the XML document and its end tag at the end of the XML document. This element may appear
only once in the XML document.

Attributes:

The element chapter has an attribute id and an attribute date. All attributes of an element appear
within the starting tag of the element. Attributes have a value that is within double quotation marks
(“).

Structure:

<element attribute1=”value” attribute2=”value2”>

element content
</element>

The element content can be empty, text or other elements.
If the element content is empty then the element can look like this:

<element attribute1=”value” attribute2=”value2”/>

If an end tag is used then no character are allowed between the starting tag and the end tag:

<element attribute1=”value” attribute2=”value2”></element>

XML declaration & DOCTYPE element

The first two lines of any XML document are always the XML declaration & the DOCTYPE
declaration:

XML declaration:
<?xml version="1.0" standalone=”no”?>
In the XML declaration we define the XML version and whether there is a DTD file with rules for
the XML structure or not

DOCTYPE declaration:
<!DOCTYPE Book SYSTEM "d:\dtd\book.dtd">
The DOCTYPE defines the root element of the XML document and the SYSTEM points out the
DTD file for the XML document.

2.1.2 DTD Explanation
The DTD file contains rules to be followed when constructing an XML document.

It defines the elements that can appear in the XML document:
<!ELEMENT element-name>

It defines the elements that can appear within an element:
<!ELEMENT element-name (element2-name)>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 6

or the type of the element content:
<!ELEMENT element-name (#PCDATA)>

It also defines the attributes that an element can have, with the appropriate rules (the type of the
attribute, whether it has to be there or not, a default value, etc.):
<!ATTLIST element-name
 attribute1-name CDATA #REQUIRED
 attribute2-name CDATA #IMPLIED>

For more help on how to construct an XML document visit one of the following tutorial sites
(tutorials for both XML and DTD):

• http://www.w3schools.com/xml/default.asp
• http://www.w3schools.com/dtd/default.asp
• http://www.spiderpro.com/bu/buxmlm001.html

2.2 XML in DB2
DB2 provides two ways for working with XML documents and XML data3:
• XML collection
• XML column

In addition to that, DB2 implements a large part of the XML functionality described in the SQL
2003 standard. Some of these functions can be used to transform ordinary relational data into XML
documents. Some of this functionality overlaps with the functionality provided by an XML
collection.

2.2.1 XML collection
When XML data is stored in a relational database, then this database is called an XML collection.
DB2 XML extender provides functions for decomposing XML documents into relational data to be
stored in the XML collection, and functions for composing XML documents from XML data stored
in the XML collection.
Since XML documents are based on hierarchical models and relational databases are based on
relational models, it is important to have a mapping between the two models. This mapping can
then be used for transformations in both directions. The mapping is defined in DAD (Document
Access Definition) files. A DAD file is an XML document that has the extension .dad and follows
the rules defined in the file dad.dtd4. The DAD file is then used when enabling the XML collection.
At that time DB2 verifies that the tables referred in the DAD file exist, otherwise they are created.
In chapter 5 there is a more detailed description of how to do all this in practice.

3 With the term XML data we refer to the contents of XML documents, even when the data has been
transformed. Data that is going to become the content of an XML document can also be referred to as XML
data
4 The file dad.dtd can be found in the following directory:
C:\Program Files\IBM\SQLLIB\samples\db2xml\dtd on all the prepared disks or any computer that has the
DB2 XML extender installed.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 7

2.2.2 XML column
XML column is a different approach than XML collection. XML column is an XML enabled
database that contains intact XML documents. Those XML documents are stored in a certain table
that has a column of one of these three types: XMLCLOB, XMLVARCHAR, XMLFile. That
column has to be enabled and associated with a DAD file. In the DAD file there can be a reference
to a DTD file for validating any inserted XML documents (XML documents that we insert to the
database), and rules for creating side tables5 and storing XML data in them. The DTD file must
have been registered in the DTD_REF table that is created when a database is being enabled for
XML.
There are more details about this in chapter 5. In chapter 4 we will also use an XML column.

Database

DTD
rules for

XML
documentXML

document

XML
document

XML
document

DAD file DAD.DTD
rules for
DAD files

Figure 2 Main components of XML in DB2

All the XML components are stored
in the database. The XML documents,
DTD files and DAD files are stored in
user tables, while the DAD.DTD file
is stored in the database manager.

The database can of course contain
other non XML specific components
too. Those components are not
represented in Figure 2.

3 Databases
As mentioned earlier this compendium contains some compulsory and some voluntary
exercises/assignments. For the compulsory part (described in chapter 4) we will use a database
about books and a database about horse riding. For the voluntary part (described in chapter 5) we
will use the database about horse riding.

3.1 Books
This database is of the type XML column described in section 2.2.2. There are a number of
commands that need to be executed in a certain sequence in order to create this database. We also
need the XML data (stored as XML files). 15 XML files, 1 DTD file, 1 DAD file and a script for
creating and populating the database can be found at the following network address:

\\DB-SRV-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML\Books

So what do all the files do and what do the commands in the script do?

5 A side table is a table that contains data from the XML document. The side tables are used to improve
performance when searching through the XML documents. Usually, only some of the XML data is placed in the
side tables – the data that is used most frequently when searching.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 8

15 XML files (book01.xml – book15.xml)
These files contain the actual data about the books. More precisely they contain the
title, the genre, the original language, data about the authors, data on each edition and
each translation and the price. The following figure shows the structure of the XML
files.

Book

Author Edition

Translation

Title Original
Language

Name Email YearOfBirth Year

Language Publisher Price

Attribute

Element

Genre

Country Price

Figure 3 XML structure for the Book XML files

1 DTD file (Book.dtd)

This file contains the rules for the XML structure described in Figure 3.

1 DAD file (bookcolumn.dad)

This file contains the information required by DB2 for creating the XML column
where the XML files will be stored. It also provides information about the DTD to be
used for validating the inserted XML files.

1 script (bookxmldb.bat)

This script contains all the commands necessary for creating and populating the
database (also called “XML column”). In detail the commands included in the script
are:

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 9

1. DB2 CREATE DATABASE book on D:
This command creates a database called book on drive D.

2. Dxxadm enable_db book
This command tells DB2 that the database book will be used for XML data. DB2
creates some infrastructure for the XML data. This infrastructure includes some
system tables and some XML specific data-types.

3. DB2 CONNECT TO book
Creates a connection to the database book that was just created.

4. DB2 CREATE TABLE xmlcol (xmldoc DB2XML.XMLVARCHAR)
Create a new table called xmlcol with one column called xmldoc of a special
XML data type.

5. DB2 INSERT INTO db2xml.DTD_REF VALUES (‘D:\xmltemp\Book.dtd’,
db2xml.XMLClobFromFile(‘D:\xmltemp\Book.dtd’), 0, ‘userX’, ‘userY’,
‘userZ’)
This command inserts the DTD file into the database, in the system table
DTD_REF. This DTD file will be later used for controlling all the incoming
XML files.

6. Dxxadm enable_column book xmlcol xmldoc d:\xmltemp\bookcolumn.dad
This command tells DB2 which column of what table will be used for inserting
the XML files. It also specifies (in the DAD file) the DTD to be used for checking
the incoming XML files.

7. DB2 INSERT INTO xmlcol (xmldoc) VALUES
(DB2XML.XMLVarcharFromFile(‘d:\xmltemp\book01.xml’))
This is the first of 15 commands that insert the XML files into the database.

8. DB2 DISCONNECT book
Finally the scripts disconnects from the database.

In order to run the script you will need to first make sure that DB2 has been started and then copy
all the files from the directory books into d:\xmltemp (if this directory doesn’t exist you have to
create it). To actually run the script you will need a DB2 Command Window. Go to d:\xmltemp
(use the command cd /d d:\xmltemp). Run the script by using the command bookxmldb.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 10

The script may take a few minutes to complete. When it has finished (the prompt has returned), the
database is ready.

3.2 Horse riding
This database is necessary for some of the exercises in chapter 4 as well as for the voluntary
exercises in chapter 5.

This database consists of five tables. The tables are connected with foreign keys as shown in Figure
4.

Figure 4 Database model of horse riding database
Scripts for creating and populating the database can be found here:
\\DB-SRV-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML\Horse riding

Simply run the two scripts (first the riding.tables.script and then the riding.insert.script) in the DB2
Command Editor! Pay attention to the statement termination character!

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 11

4 Compulsory Exercises and Assignments
This chapter contains a number of exercises that are compulsory for completing the course
assignment. For these exercises we will use the two databases that we created in sections 3.1 and
3.2. In the section that follows (section 4.1) you will find a description of some functions that we
will use for querying and manipulating data in the XML column and for producing XML from
relational data. After that we will go through a few queries that use these functions (sections 4.2
and 4.3). Finally, in section 4.4 you will be given some questions to solve.

4.1 XML specific functions
In this section we will look at the most common functions that DB2 provides for querying and
manipulating data in an XML column, as well as functions for composing XML as the result of an
SQL statement.

An XML column consists of XML documents stored in a column of a relational table. So, to extract
a specific part of the XML documents we need to specify where in the XML structure the desired
data is located. We call this the path (also known as the location path).

There are two groups of functions:

1. Extract functions that are used to retrieve values from XML documents.

There are 20 different extract functions, grouped in two groups. We will look at some
functions from each group. The only difference between the functions of each group is the data
type they return (there are 10 data types). The one group of functions returns atomic values, the
other returns multiple values.

2. The update function, which is used for changing parts of XML documents6.
This function can be used to alter attribute and element values of an XML document and returns
the altered version of the XML document.

The path is an important parameter for both the extract functions and the update function. All
these function "belong" to the DB2XML schema. This means that when using the functions we
must always qualify them with the schema name (we will see how this is done later). Before we
look at the functions, we will take a quick look at the path and its syntax (in section 4.1.1).

For data stored in a usual relational database, we have a set of functions for creating XML. These
functions can be incorporated in the SELECT clause of an SQL statement in order to transform the
result into a user defined XML structure. There are several functions, but we will only look at the
following:

1. XMLELEMENT, XMLFOREST and XMLATTRIBUTES.

With these functions we can create elements and attributes.
2. XMLAGG.

With this function we can aggregate several values.

6 This function can also be used to delete a part of an XML document. If you wish to delete the entire XML
document, then you can simply delete the row where the XML document is stored (with a standard SQL
DELETE statement).

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 12

3. XMLCONCAT.
With this function we can concatenate several elements.

4.1.1 Path
A path can have the following form7:

/element/element/@attribute

There may be one or more elements and there can be an attribute at the end (we denote that it is an
attribute with the at-sign (@). For the structure of the Book XML documents the following are
valid paths:

/Book/@Title
/Book/Author/@Name
/Book/Edition
/Book/Edition/Translation/@Language
/Book

This kind of paths is in most cases sufficient. Sometimes, on the other hand it may be necessary (or
just quicker) to use the advanced path syntax. This syntax requires the following extras:

• Filtering (only attribute values)

For example the following path finds only Names of Authors from Austria:
/Book/Author[@Country="Austria"]/@Name

• Use of wildcards
The following example finds an attribute Year at any sub-element (denoted by a *) of the
element Book
/Book/*/@Year

• Support for recursion
This is supported according to the documentation, but not by the actual DB2.

These can of course be combined in creating more complex paths. Here is an example that
represents the price on any English book from year 2002 that has been translated into Swedish:

/Book[@OriginalLanguage="English"]/Edition[Year="2002"]/*[Language="Swedish"]/@Pric
e

More information on the path syntax and use can be found in the "XML Extender Administration
and Programming" document (pages 144-145) that can be found at the following addresses:

• \\DB-SRV-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML\XML Extender

Administration and Programming v8 (c2712340).pdf
• http://publibfp.boulder.ibm.com/epubs/pdf/c2712340.pdf

7 This is actually the syntax of the simple location path. We will see later that there is an advanced version of the
path syntax.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 13

4.1.2 Extract functions
As mentioned earlier there are two groups of extract functions. They all follow the same syntax and
take the following two parameters:

1. XML document This is the column name where the XML document is stored
2. Path This is the XML path that will be extracted

The first group contains 10 functions for extracting atomic values from an XML document. The
functions are:

extractInteger()

It returns an integer value of the extracted path.

extractSmallint()

It returns a smallint value of the extracted path.

extractDouble()

It returns a double value of the extracted path.

extractReal()

It returns a real value of the extracted path.

extractChar()

It returns a char value of the extracted path.

extractVarchar()

It returns a varchar value of the extracted path.

extractDate()

It returns a date value of the extracted path.

extractTime()

It returns a time value of the extracted path.

extractTimestamp()

It returns a timestamp value of the extracted path.

extractCLOB()

It creates a new XML document that has as its root element the last
element that appears in the path parameter. The new XML
document is returned as a CLOB. The path sent to this method
cannot have an attribute at the end.

The second group contains 10 functions for extracting multiple values from an XML document.
This means that the same path can appear more than once in the XML documents. In the XML
structure for the Book XML documents the following are examples of paths that may have multiple
values:

/Book/Author/@Name
/Book/Edition/Translation
/Book/Edition/@Price

The functions are:

ExtractIntegers()

It returns integer values of the extracted path.

ExtractSmallints()

It returns smallint values of the extracted path.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 14

ExtractDoubles()

It returns double values of the extracted path.

ExtractReals()

It returns real values of the extracted path.

ExtractChars()

It returns char values of the extracted path.

ExtractVarchars()

It returns varchar values of the extracted path.

ExtractDates()

It returns date values of the extracted path.

ExtractTimes()

It returns time values of the extracted path.

ExtractTimestamps()

It returns timestamp values of the extracted path.

ExtractCLOBs()

It creates new XML documents that has as their root element the
last element that appears in the path parameter. The new XML
documents are returned as CLOBs. The path sent to this method
cannot have an attribute at the end.

These functions are most useful together with the table function. The table function takes one
parameter and makes a table out of it. The following example makes a table of all author names in
the XML document:

table(extractVarchars(xmldoc, '/Book/Author/@Name')

This would of course need to be in a context where xmldoc is defined.

When using one the extract functions with the table function, then a table with one column is
created. This column is named differently depending on the extract function used. The column is
always named according to the following convention:

"returned" + data type

So in the example above the column of the created table would be named returnedVarchar.

All the 20 functions can at times return warnings and errors. These can depend on many reasons.
The most common are:

• A path was not found
• A value of a path was incompatible with the type to be extracted
• A path appeared more than once (when using the first group of functions).

The full description of the functions and their associated error and warning codes can be found in
the "XML Extender Administration and Programming" document that can be found under Start >
Programs > Databases > IBM DB2 > DB2 XML Extender > XML Extender Admin and
Programming.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 15

4.1.3 Update function
The update function receives three parameters and returns an XML document. The update function
works with one XML document at a time. The three parameters are:

1. XML document The column name where the XML document is stored
2. Path This is the path within the XML document that will be updated
3. New value This is the value that the element or attribute at the defined path will be

updated to.

The update function does not affect directly the XML documents stored in the XML column. It
merely reads them and creates copies of them. Those copies must replace the original XML
documents in the XML column if the changes are to be saved. That has to be done with a standard
SQL UPDATE statement. We will see examples of that in section 4.2.2.

It is important to know that the update function will update all the occurrences of the defined path
to the new value. The following example would change the country of all the authors to "India":
Update(xmldoc, '/Book/Author/@Country', 'India')

This would again need to be in a context where xmldoc is defined.

4.1.4 Functions for generating XML - XML/SQL functions
In this section we look at the functions DB2 provides for transforming relational data into XML
documents directly in SQL SELECT statements8.

Here is a more detailed description of the functions used to compose XML as the output of SQL.

XMLELEMENT (name,
content/attributes/sub-elements)

Creates an element of the given name and populates it
with the given content, attributes and sub-elements.

XMLFOREST (arg1 [AS label1],
arg2 [AS label2], …, argN [AS
labelN])

Creates a forest of elements from the given list of
arguments with the labels as element names. If a label I
omitted then the argument’s name will be used as the
element name.

XMLATTRIBUTES (arg1 [AS
label1], arg2 [AS label2], …,
argN [AS labelN])

Similar to XMLFOREST, but the result is a list of
attributes. This function can be used as a parameter to
the XMLELEMENT function.

XMLAGG(element) Aggregates all the elements generated by the parameter
so that they can become sub-elements of another
element. XMLAGG is regularly a parameter to an
XMLELEMENT and it has an XMLELEMENT as its
parameter. XMLAGG can also be combined with the
GROUP BY clause of the SQL statement.

XMLCONCAT(element1,
element2, …, elementN)

Concatenates the elements of the parameters. Similar to
concatenating strings.

8 These functions are actually defined in SQL 2003.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 16

4.2 Queries against the XML column explained
All the functions mentioned in the previous sections can be used in SQL statements. In the sections
that follow we will look at some examples that require the use of extract and update functions.

All the commands in this section can be executed in the DB2 Command Editor. Don't forget to
adjust the command termination character since many of the commands will be several rows long.
It is also recommended that you change the way the output/result is shown in the DB2 Command
Editor. In the options select the following (in the menu Tools > Tools Settings > Command Editor):

Uncheck the Display results for a single query on the Query Results page

A collection of all the SQL statements from the following sections exists at:

\\Db-srv-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML\SQL commands.txt

4.2.1 Retrieving data
In this section we will look at ways to extract data from the XML documents in the XML column.
We will first look at some simple examples that only use the first group of extract functions. Then
we will look at some examples that use the second group of the extract functions. Finally we will
look at some more advanced examples that use the extractCLOBs function to perform more
complicated queries.

Let's start with the following question:
What are the titles of all the books?

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 17

Book

Author Edition

Translation

Title Original
Language

Name Email YearOfBirth Year

Language Publisher Price

Genre

Country Price

To answer this question we have to extract
the value of the attribute Title of the
element Book.

Since the title is a string value, we will use
the function extractVarchar. Here is a
simple SQL SELECT statement:

SELECT
DB2XML.extractVarchar(xmldoc,'/Book/
@Title') FROM xmlcol

 Run this SQL statement in the DB2
Command Editor! (You will first need
to connect to the database book. You do
that with the command connect to
book.)

You should see the following result:

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 18

Or (if you haven't configured the DB2 Command Editor according to section 4.2):

If you scroll right you can see that see that the column of the result is quite wide. This is because
the extractVarchar function always returns a 4000-characters long string. To avoid this we can use
the function substr. This function takes a string and returns a sub-string of a specified length. Here
is the same SQL statement as before, but with the substr function:

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Title'),1,30) FROM xmlcol

This will create a sub-string 30 characters long starting from the 1st character.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 19

Here is the result:

You can notice in the result that the returned column doesn't have a name. It is therefore
automatically called "1" since it is the 1st column. We can assign a name for the column by using
the keyword AS. This is how the SQL statement and the result would look then:

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Title'),1,30) AS "The Title"
FROM xmlcol

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 20

Finally we may want to order the results alphabetically. We can then add an ORDER BY clause9 to
the SQL statement (Observe that the column namea that we define with the keyword AS are not
available in the ORDER BY clause.):

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Title'),1,30) AS "The Title"
FROM xmlcol ORDER BY 1

And now the result is ordered:

We can look now at something more complicated. The following question for example:

List all the titles and original language for all the novels! Sort the results by language and then by
title!

In this case we will have two columns in our result and we also have one condition. Both our
columns contain string values, so we will have to use the extractVarchar function. We will look at
two ways of representing the condition. We start first with having the condition in the path:

9 In order to use a column in the ORDER BY clause, the column has to be 255 character or less (if it is a string).
All other types (real, integer, time, etc) can also be used in the ORDER BY clasuse. The same rule applies to the
use of DISTINCT.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 21

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book[@Genre="Novel"]/@Title'),1,30)
AS "Title",
substr(DB2XML.extractVarchar(xmldoc,'/Book[@Genre="Novel"]/@OriginalLanguage'),1,2
0) AS "Language" FROM xmlcol ORDER BY 2, 1

The result of this SQL statement returns one row for each XML document, even if the condition
was not fulfilled:

This is the disadvantage of using conditions in the path. Here we can also see that DB2 returns a
warning when a path was not found. This is just a limitation of DB2. The correct behaviour would
be to use the default value for the missing attribute, which is specified in the DTD. For now we will
just ignore this warning.

We will now look at another way of using a condition. We can use an extract funtion in the
WHERE clause of the SQL statement:

SELECT
substr(DB2XML.extractVarchar(xmldoc,'/Book/@Title'),1,30) AS "Title",
substr(DB2XML.extractVarchar(xmldoc,'/Book/@OriginalLanguage'),1,20) AS "Language" FROM
xmlcol
WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Novel'
ORDER BY 2, 1

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 22

This version returns only three rows (one for each XML document that fulfilled the condition):

We can of course use aggregate functions to answer questions like this one:

How many books of each genre are there?

We can then use the COUNT function and the GROUP BY clause to solve this. The only problem
is that the column we want to use for grouping doesn't exist from the beginning. We must therefore
break the query into two. First we must create a table with all the genres from all the XML
documents and then work with that table. This is the first part:

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Genre'),1,15) AS Genre FROM
xmlcol

We can now use this part in the FROM clause of a new SELECT statement:

SELECT Genre, COUNT(*) AS "Amount of Books"
FROM (SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Genre'),1,15) AS Genre
FROM xmlcol) AS temptable
GROUP BY Genre

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 23

This will produce the following result:

So far we have only used paths that appeared only once in each XML document. The following
question requires data from paths with multiple values:

Which authors have written thrillers or science fiction?

To solve this we will need to use the extractVarchars function. We will also use the
extractVarchar function for checking the conditions:

SELECT substr(returnedVarchar,1,30) AS Authors
FROM xmlcol, table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t
WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Thriller'
OR DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Science Fiction'

Since we have to use one of plural extract functions, we also have to use the table function to
capture the result. In the FROM clause we must have first the table xmlcol and then the table
function, otherwise the extractVarchars function in the table function will not know where the
xmldoc comes from. The result of the table function is also given a name (t) with the keyword AS.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 24

The result of this SQL statement is the following:

We could of course return all the details of the authors instead of just the name, but if we would try
to do this with three table functions, we would risk getting invalid results. The following query for
example would not work:

SELECT substr(t1.returnedVarchar,1,30) AS Author,
returnedInteger as Year,
substr(t3.returnedVarchar,1,15) AS Country
FROM xmlcol,
table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t1,
table(DB2XML.extractIntegers(xmldoc,'/Book/Author/@YearOfBirth')) AS t2,
table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Country')) AS t3
WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Thriller'
OR DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Science Fiction'

The reason is that the three table functions would be joined without any condition (like a Cartesian
product), so if a book has 2 authors we would get 8 (2*2*2) combinations of the two names with
the two years of birth and the two countries. Similarly if a book would have five authors there
would be 125 combinations. To avoid this, we have to use the extractCLOBs function instead!

But first, let's see what the extractCLOBs function does. If we want to extract a part of an XML
document as a smaller XML document we can use the extractCLOBs function. In the example that
follows we extract the Edition elements of all the thrillers as new XML documents:

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 25

SELECT substr(returnedCLOB,1,300) as "Thriller Editions"
FROM xmlcol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Edition')) AS t
WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Thriller'

The function substr is only used to make the result smaller, since we know that the new XML
documents are not that big. The path used in the extractCLOBs function does not have an attribute
at the end. It has instead the element that is to be the root element of the new XML documents:

The way to solve the previous question with the extractCLOBs function instead of the three table
functions (that did not work) would be the following:
First we extract CLOBs for all the Author elements of books that match the condition criteria and
then we can use the simple extract functions to retrieve the wanted data from the new XML
documents (the CLOBs):

SELECT
substr(DB2XML.extractVarchar(DB2XML.XMLCLOB(t.returnedCLOB),'/Author/@Name'),1,30) AS
Author,
DB2XML.extractInteger(DB2XML.XMLCLOB(t.returnedCLOB),'/Author/@YearOfBirth') as Year,
substr(DB2XML.extractVarchar(DB2XML.XMLCLOB(t.returnedCLOB),'/Author/@Country'),1,15)
AS Country
FROM xmlcol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t
WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Thriller'
OR DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Science Fiction'

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 26

The function XMLCLOB of the schema DB2XML is also used here. This is a casting function that
takes a CLOB value and returns it as an XMLCLOB value. This is required because the extract
functions expect a variable of XML data type (such as XMLCLOB or XMLVARCHAR). This
SQL statement returns all the information on authors that have written thrillers or science fiction:

Sometimes it may be necessary to combine in the result, data from different levels of the XML
structure. The following questing asks as to do exactly that:

Make a list of all the educational books and the authors that have written each book! Show the
book title and each author’s name and country! Show only authors that are born after 1950!

To solve this we will need to have conditions on two levels and also retrieve information from two
levels. When solving a problem like this, we always start at the higher level of the XML structure
(the Book element) and move step by step through the sub-elements. The first thing to do is to
check the genre of the books and retrieve the title and the authors (as CLOBs). When we have done
that we can start working with the contents of the author CLOBs. The first part can be done with
the following SELECT statement:

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Title'),1,30) AS Title,
DB2XML.XMLCLOB(t.returnedCLOB) AS AuthorXML
FROM xmlcol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t
WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Educational'

This will create a table with two columns (the book title and the author CLOB) and one row for
each author of each educational book. We also cast the returned CLOB into an XMLCLOB, so that
we don't have to do it later.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 27

We can now use this SELECT statement as the source for an outer SELECT statement. This means
that we assign a name to the result of this SELECT statement, which will be considered by the new
SELECT statement as a table with two columns (Title and AuthorXML).

The new SELECT statement will then retrieve the name and country of the authors and control the
year of birth:

SELECT Title,
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Name'),1,20) AS "Author Name",
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,15) AS "Author Country"
FROM (SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Title'),1,30) AS Title,

DB2XML.XMLCLOB(t.returnedCLOB) AS AuthorXML
FROM xmlcol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t
WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Educational') AS temptable

WHERE DB2XML.extractInteger(AuthorXML,'/Author/@YearOfBirth') > 1950

And the result is the following:

Now we are ready to look at really complex examples. The following qualifies as such:

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 28

Show a list of all the authors born after 1940, the amount of book editions they have written and the
amount of different languages each author's books have been translated to! Also show the average
price of the book editions for each author! The result shall have the following columns: Author
Name, Author Country, Amount of editions, Amount of translation languages, Average price. The
result shall be sorted by author name!

To solve this we will need to work in many steps. First we need to extract the editions and the
authors:

SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,
DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmlcol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t1,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Edition')) AS t2

This will return all valid combinations of authors and editions (55 such).

Next thing we have to do is to extract the name and country of the authors and also get rid of the
authors that were born 1940 or earlier. At the same time we can also extract the edition price:

SELECT substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Name'),1,20) AS Name,
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,20) AS Country,
DB2XML.extractInteger(EditionXML,'/Edition/@Price') AS Price
FROM (SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,

DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmlcol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t1,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Edition')) AS t2) AS temptable1

WHERE DB2XML.extractInteger(AuthorXML,'/Author/@YearOfBirth') > 1940

We can now use this SQL statement in the FROM clause of the next SELECT statement. Now we
have enough information to count the amount of editions and even calculate the average edition
price:

SELECT Name, Country, COUNT(*) AS "Amount of editions", AVG(Price) "Average edition price"
FROM (SELECT substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Name'),1,20) AS Name,

substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,20) AS Country,
DB2XML.extractInteger(EditionXML,'/Edition/@Price') AS Price
FROM (SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,

DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmlcol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t1,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Edition')) AS t2) AS temptable1

WHERE DB2XML.extractInteger(AuthorXML,'/Author/@YearOfBirth') > 1940) AS temptable2
GROUP BY Name, Country

This statement has now four columns. These are four of the five that we need to have in the final
result.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 29

The last (missing) column is the amount of different languages every author has been translated
into. To get that, we have to start from the beginning again. This is especially important since the
translation element may not appear for all editions. This means that we will have half of the results
in one SQL statement and the other half in another. We will simply need to join the two results at
the end. And in order to guaranty that all the authors are in the result we will have to use an outer
join. Remember that the result above had 19 rows. We should have 19 rows in the final result as
well. But first things first.

In order to retrieve the different languages we start from the xmlcol as we did before, but this time
we can extract directly the author names and the translation languages (all the valid combinations).
Since we are going to join the result of this part with the result from before, we need not care about
the conditions (The invalid authors will automatically get filtered out when we join with the list of
the valid ones that we created before.):

SELECT substr(t1.returnedVarchar,1,20) AS Name,
substr(t2.returnedVarchar,1,20) AS Language
FROM xmlcol, table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t1,
table(DB2XML.extractVarchars(xmldoc,'/Book/Edition/Translation/@Language')) AS t2

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 30

Notice that here it is okay to use two table functions together because we do want all the
combinations of languages and author names!

Now we can use this result to count the different languages every author has been translated into:

SELECT Name, COUNT (DISTINCT Language) AS "Amount of languages"
FROM (SELECT substr(t1.returnedVarchar,1,20) AS Name,

substr(t2.returnedVarchar,1,20) AS Language
FROM xmlcol, table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t1,
table(DB2XML.extractVarchars(xmldoc,'/Book/Edition/Translation/@Language')) AS t2) as t

GROUP BY Name

Here we used the DISTINCT keyword in the COUNT function in order to count each language
once. We could just as easily have used DISTINCT in the SELECT clause of the nested statement.

Either way, this returns two columns: the author name and the amount of different languages:

The author name is the column that this result and the previous result have in common, and it is the
one we need in order to join the two results. Note that this result has 23 rows (more that 19). But
this does not automatically mean that all the 19 tat we want are included in the 23.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 31

Now to join the two parts. We can simply construct a new SELECT statement and place the two
parts as two tables in the FROM clause. Then we simply use as a join condition, checking that the
author names are equal. We start with an inner join in order to prove that this could fail to catch all
the 19 authors:

SELECT part1.Name AS "Author name", Country AS "Author Country",
"Amount of editions", "Average edition price", "Amount of languages"
FROM
(SELECT Name, Country, COUNT(*) AS "Amount of editions",
AVG(Price) "Average edition price"
FROM (SELECT substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Name'),1,20) AS Name,

substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,20) AS Country,
DB2XML.extractInteger(EditionXML,'/Edition/@Price') AS Price
FROM (SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,

DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmlcol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t1,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Edition')) AS t2) AS temptable1

WHERE DB2XML.extractInteger(AuthorXML,'/Author/@YearOfBirth') > 1940) AS temptable2
GROUP BY Name, Country) AS part1,
(SELECT Name, COUNT (DISTINCT Language) AS "Amount of languages"
FROM (SELECT substr(t1.returnedVarchar,1,20) AS Name,

substr(t2.returnedVarchar,1,20) AS Language
FROM xmlcol, table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t1,
table(DB2XML.extractVarchars(xmldoc,'/Book/Edition/Translation/@Language')) AS t2) as t

GROUP BY Name) AS part2
WHERE part1.Name = part2.Name
ORDER BY 1

And the result will look nicely like this:

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 32

But it only contains 13 rows. That means that 6 of the wanted authors did not have any translations.
So we will simply add the value 0 for their fifth column. We can achieve this with a LEFT
OUTER JOIN and the COALESCE function:

SELECT part1.Name AS "Author name", Country AS "Author Country",
"Amount of editions", "Average edition price",
COALESCE("Amount of languages", 0) AS "Amount of languages"
FROM
(SELECT Name, Country, COUNT(*) AS "Amount of editions",
AVG(Price) "Average edition price"
FROM (SELECT substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Name'),1,20) AS Name,

substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,20) AS Country,
DB2XML.extractInteger(EditionXML,'/Edition/@Price') AS Price
FROM (SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,

DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmlcol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t1,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Edition')) AS t2) AS temptable1

WHERE DB2XML.extractInteger(AuthorXML,'/Author/@YearOfBirth') > 1940) AS temptable2
GROUP BY Name, Country) AS part1 LEFT OUTER JOIN
(SELECT Name, COUNT (DISTINCT Language) AS "Amount of languages"
FROM (SELECT substr(t1.returnedVarchar,1,20) AS Name,

substr(t2.returnedVarchar,1,20) AS Language
FROM xmlcol, table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t1,
table(DB2XML.extractVarchars(xmldoc,'/Book/Edition/Translation/@Language')) AS t2) as t

GROUP BY Name) AS part2 ON (part1.Name = part2.Name)
ORDER BY 1

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 33

And we finally have the correct result:

For even more explained examples you can take a look an older version of the lab compendium
pages 29-36 (model of XML structure on page 10). This can be found at

\\Db-srv-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML\Comdendium DB2-XML v.2.0
(ht2001).doc

4.2.2 Manipulating data
Retrieving data from the XML documents is not always enough. Sometimes we need to change a
value in an XML document, without having to delete the entire document and insert it after
manually making a change. We may also want to do some methodic change in the entire XML
column, such as change the word "USSR" to "Russia" for any attribute named Country.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 34

In this section we will look at a couple of examples of doing such changes. We will start with the
following problem:

Change the e-mail of Jakob Hanson to hanson@home.se!

We can do this in two different ways. The first way is to go through every XML document in the
XML column and update the path /Book/Author[@Name="Jakob Hanson"]/@Email to
hanson@home.se. This would of course do a lot of extra work, but in a smaller system it may not
matter. The other way would be to first find the XML documents that contain an author name Jakob
Hanson and then change the email in those documents only. Both ways will produce the same
result.

Here is an UPDATE statement for the first variant:

UPDATE xmlcol
SET xmldoc = DB2XML.update(xmldoc,

'/Book/Author[@Name="Jakob Hanson"]/@Email',
'hanson@home.se')

After running this we get a message that the command was completed successfully, but we may
also want to verify that the e-mail address really got updated. We can simply do that with the
following SQL statement:

SELECT substr(DB2XML.extractVarchar(xclob,'/Author/@Email'),1,20) AS Email
FROM (SELECT DB2XML.XMLCLOB(returnedCLOB) AS xclob

FROM xmlcol,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t) AS temp

WHERE DB2XML.extractVarchar(xclob,'/Author/@Name') = 'Jakob Hanson'

The other version of the UPDATE statement would look like this:

UPDATE xmlcol
SET xmldoc = DB2XML.update(xmldoc,

'/Book/Author[@Name="Jakob Hanson"]/@Email',
'hanson@home.se')

WHERE 'Jakob Hanson' IN
(SELECT returnedvarchar
FROM table(DB2XML.extractVarchars(xmldoc, '/Book/Author/@Name')) as t)

This version is much faster, but it may be difficult to detect when the slow version only takes a
second or two. For the exercises in section 4.4 you can use any of the two styles.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 35

4.3 Queries that produce XML explained
In this section we take a look at the functions used to create XML as the output of an SQL
statement. The examples in this section are based on the horse riding database described in section
3.2.

We can start with a simple example:

Return all the horse names as the content of Horse elements!

First we could just write a standard SQL statement to return the horse names:

SELECT Hname FROM Horse

This would simply return all the names:

What we want to do is place these names inside XML elements. To do this we can use the
XMLELEMENT function or the XMLFOREST function. DB2 requires that we transform the result
to a data type that can be shown for the user. Since all the XML functions return a result of the
special XML data type, we can use the function XML2CLOB to cast them to CLOB.

SELECT XML2CLOB(XMLELEMENT(NAME "Horse", Hname)) FROM Horse
SELECT XML2CLOB(XMLFOREST(Hname AS "Horse")) FROM Horse

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 36

Either statement will return the same result:

The XMLFOREST function can be used to create more than one element, while the
XMLELEMENT only produces one element. For the following we can use the XMLFORSET
function:

Show all the information of each horse as elements!

SELECT XML2CLOB(XMLFOREST(Hname AS Name, Weight, Color, Sex, BirthYear,
OwnerClub As "Club"))
FROM Horse

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 37

Note that the element names use capital letters unless we specify the element name enclosed in
double quotes. Also note that the result has one column.

If we try to do a similar thing with the XMLELEMENT function we could have this statement:

SELECT XML2CLOB(XMLELEMENT(NAME Name, Hname)),
XML2CLOB(XMLELEMENT(NAME Weight, Weight)),
XML2CLOB(XMLELEMENT(NAME Color, Color)),
XML2CLOB(XMLELEMENT(NAME BirthYear, BirthYear)),
XML2CLOB(XMLELEMENT(NAME Sex, Sex)),
XML2CLOB(XMLELEMENT(NAME "Club", OwnerClub))
FROM Horse

This would return six columns and each column would be 4000 characters wide. In order to make
the six elements one uninterrupted sequence, we can use the XMLCONCAT function:

SELECT XML2CLOB(XMLCONCAT(XMLELEMENT(NAME Name, Hname),
XMLELEMENT(NAME Weight, Weight),
XMLELEMENT(NAME Color, Color),
XMLELEMENT(NAME BirthYear, BirthYear),
XMLELEMENT(NAME Sex, Sex),
XMLELEMENT(NAME "Club", OwnerClub)))
FROM Horse

This will produce the exact same result as the version using the XMLFOREST function:

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 38

But this may not be exactly what we wanted after all (Because the result is not a well-formed XML
document.). We probably would like all these elements to be inside a Horse element. To do this we
can create an element and place the XMLCONCAT or the XMLFOREST inside it:

SELECT XML2CLOB(XMLELEMENT(NAME Horse, XMLCONCAT(XMLELEMENT(NAME
Name, Hname), XMLELEMENT(NAME Weight, Weight),
XMLELEMENT(NAME Color, Color), XMLELEMENT(NAME BirthYear, BirthYear),
XMLELEMENT(NAME Sex, Sex), XMLELEMENT(NAME "Club", OwnerClub))))
FROM Horse

And we have a much better result:

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 39

The same result could be achieved with the following version:

SELECT XML2CLOB(XMLELEMENT(NAME Horse, XMLFOREST(Hname AS Name,
Weight, Color, Sex, BirthYear, OwnerClub As "Club")))
FROM Horse

Another thing we may want to do is put some data as attributes. We could modify the previous
statement so that the horse name and weight can be attributes in the Horse element, instead of sub
elements. To do this we will use the XMLATTRIBUTES function (which can only be used as a
parameter to the XMLELEMENT function before any sub elements):

SELECT XML2CLOB(XMLELEMENT(NAME Horse,
 XMLATTRIBUTES(Hname AS "Name", Weight),
 XMLFOREST(Color, Sex, BirthYear, OwnerClub As "Club")))
FROM Horse

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 40

And the result looks like this:

The next kind of thing we may want to do is aggregate information in many levels. Here is an
example:

Create a Club element for each club and a sub element Horse for each horse owned by that club.
Just show the name of the club and the name of the horse!

There are several ways to solve this, but, either way, the XMLAGG function will come in handy.
Producing the Club element with an attribute Name would be similar to what we did before. The
difference here is that there are many horses for each club. We can therefore combine a GROUP
BY clause with an XMLAGG function:

SELECT XML2CLOB(XMLELEMENT(NAME "Club", XMLATTRIBUTES(OwnerClub AS
"Name"), XMLAGG(XMLELEMENT(NAME "Horse", HName))))
FROM Horse
GROUP BY OwnerClub

The result would look like this:

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 41

We could also use the XMLAGG function to aggregate all the rows of the result into one root
element:

SELECT XML2CLOB(XMLAGG(newcol))
FROM (SELECT XMLELEMENT(NAME "Club",

XMLATTRIBUTES(OwnerClub AS "Name"),
XMLAGG(XMLELEMENT(NAME "Horse", HName))) AS newcol

 FROM Horse
 GROUP BY OwnerClub) AS innertable

The result is now a sequence of Club elements:

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 42

We can of course place them inside a root element Clubs:

SELECT XML2CLOB(XMLELEMENT(NAME "Clubs", XMLAGG(newcol)))
FROM (SELECT XMLELEMENT(NAME "Club",

XMLATTRIBUTES(OwnerClub AS "Name"),
XMLAGG(XMLELEMENT(NAME "Horse", HName))) AS newcol

 FROM Horse
 GROUP BY OwnerClub) AS innertable

We can of course combine any SQL structure we want with the XML functions. We could for
example add an attribute to the element Club that indicates how many horses the club has and one
for how many riders the club has:

SELECT XML2CLOB(XMLELEMENT(NAME "Clubs", XMLAGG(newcol)))
FROM (SELECT XMLELEMENT(NAME "Club",

XMLATTRIBUTES(OwnerClub AS "Name",
COUNT(HName) AS "AmountOfHorses",
(SELECT COUNT(*) FROM Rider
WHERE MemberClub = OwnerClub) AS "AmountOfRiders"),

XMLAGG(XMLELEMENT(NAME "Horse", HName))) AS newcol
 FROM Horse
 GROUP BY OwnerClub) AS innertable

The resulting XML would look like this:

<Clubs>

<Club Name="Appaloosa Horse Club" AmountOfHorses="3" AmountOfRiders="2">
<Horse>King Slayer</Horse>
<Horse>Lake William</Horse>
<Horse>Scooter Brown</Horse>

</Club>
<Club Name="Horseriders" AmountOfHorses="1" AmountOfRiders="4">

<Horse>Magellan</Horse>
</Club>
<Club Name="Morgan Horse Club" AmountOfHorses="2" AmountOfRiders="3">

<Horse>Lady Macknight</Horse>
<Horse>Quiet Patriot</Horse>

</Club>
<Club Name="Riders Club" AmountOfHorses="4" AmountOfRiders="4">

<Horse>Felicity Rose</Horse>
<Horse>Not Without Honor</Horse>
<Horse>Ran Minister</Horse>
<Horse>Speed Promise</Horse>

</Club>
<Club Name="Wild Horse Club" AmountOfHorses="2" AmountOfRiders="3">

<Horse>Fabulous Guy</Horse>
<Horse>Spinelessjellyfish</Horse>

</Club>
</Clubs>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 43

Finally we can look at an example that makes use of the functions of this section together with the
extract functions from section 4.1.2. (You will need to connect to the Book database for this one.)

Create an XML element Authors with one element for each Author with the author's name as an
attribute and the amount of books as another attribute!

We can do this with the following statement:

SELECT XML2CLOB(XMLELEMENT(NAME "Authors",
 XMLAGG(XMLELEMENT(NAME "Author",
 XMLATTRIBUTES(atable.returnedVarchar AS "Name",
 (SELECT COUNT(*)
 FROM xmlcol
 WHERE atable.returnedVarchar IN (SELECT returnedVarchar
 FROM table(db2xml.extractVarchars(xmldoc, '/Book/Author/@Name')) AS temp)
) AS "AmountOfBooks")))))
FROM xmlcol, table(db2xml.extractVarchars(xmldoc, '/Book/Author/@Name')) AS atable

And the result would be one XML element Authors, shown here indented:

<Authors>
 <Author AmountOfBooks="1" Name="John Craft"/>
 <Author AmountOfBooks="1" Name="Arnie Bastoft"/>
 <Author AmountOfBooks="1" Name="Meg Gilmand"/>
 <Author AmountOfBooks="1" Name="Chris Ryan"/>
 <Author AmountOfBooks="1" Name="Alan Griff"/>
 <Author AmountOfBooks="1" Name="Marty Faust"/>
 <Author AmountOfBooks="1" Name="Celine Biceau"/>
 <Author AmountOfBooks="1" Name="Carl Sagan"/>
 <Author AmountOfBooks="1" Name="Leslie Brenner"/>
 <Author AmountOfBooks="2" Name="Marie Franksson"/>
 <Author AmountOfBooks="1" Name="Jakob Hanson"/>
 <Author AmountOfBooks="2" Name="Sam Davis"/>
 <Author AmountOfBooks="1" Name="Mimi Pappas"/>
 <Author AmountOfBooks="2" Name="Marie Franksson"/>
 <Author AmountOfBooks="1" Name="Franc Desteille"/>
 <Author AmountOfBooks="1" Name="Carl George"/>
 <Author AmountOfBooks="1" Name="Peter Feldon"/>
 <Author AmountOfBooks="1" Name="Lilian Carrera"/>
 <Author AmountOfBooks="1" Name="Auna Gonzales Perre"/>
 <Author AmountOfBooks="1" Name="Kostas Andrianos"/>
 <Author AmountOfBooks="1" Name="Andreas Shultz"/>
 <Author AmountOfBooks="1" Name="Antje Liedderman"/>
 <Author AmountOfBooks="1" Name="Christina Ohlsen"/>
 <Author AmountOfBooks="2" Name="Sam Davis"/>
 <Author AmountOfBooks="1" Name="Alicia Bing"/>
 <Author AmountOfBooks="1" Name="Pierre Zargone"/>
 <Author AmountOfBooks="1" Name="Linda Evans"/>
 <Author AmountOfBooks="1" Name="Chuck Morrisson"/>
 <Author AmountOfBooks="1" Name="Kay Morrisson"/>
 <Author AmountOfBooks="1" Name="James Patterson"/>
 <Author AmountOfBooks="1" Name="Peter de Jonge"/>
</Authors>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 44

4.4 Assignments
Solve the following questions:

1. Make a list of all the publishers! (No duplicates)
2. How many educational books have been written originally in English?
3. How many translations are there for each book that was originally in English? Even books with

no translations should be in the result.
4. Which books where written by more than two authors? (Show the book titles!)
5. Make a list of all non-Swedish authors with their e-mail addresses and year of birth! (No

duplicates)
6. Change the year of birth of the Australian author of the book "Archeology in Egypt" to 1966!
7. Create a Rider element for each rider of the club Horseriders. The Rider element shall have a

Name attribute, a Weight attribute and an attribute with the amount of races this rider has
finished. The result should be one Riders element with all the Rider elements inside it.

8. Create a Languages element with Language sub elements. Each Language element shall
have a Value attribute (with the actual language). Create one Language element for each
language that appears as the original language of any book. Each Language element shall have
one or more Book sub elements, based on the books' original language, with the book title as its
content.

5 Voluntary Exercises
In this chapter we will look at DB2's facilities for transforming relational data into XML
documents. Even though this part is not a requirement for the course it can be interesting to know
have to create XML documents from data stored in relational tables.

In this chapter we will go through the following:

 Create a database (relational database).
 Enable the database for XML (as an XML collection) and compose XML documents from the

data in the XML collection (the database).
 Extract XML documents into XML files.
 Store XML documents in an XML column (which is similar to what we did with the script in

section 3.1).

All the files required in this chapter, as well as a text file with all the commands, are available at:

\\Db-srv-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML\Files for Voluntary Exercises

5.1 Create the database
The database can easily be created and populated by running the two scripts (see section 3.2). You
have probably already done this in order to complete the exercises in chapter 4.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 45

5.2 Enable the database for XML (as an XML collection) and compose
XML documents
When the database has been created, it is just an ordinary relational database. If the database is
going to be used as an XML collection then it has to be enabled for XML. That is done as follows:
• Start a DB2 Command Window (Start > Programs > Databases > IBM-DB2 > Command Line

Tools > Command Window)
• Execute this command in the Command Window:

dxxadm enable_db riding

When that is done there should be a few more tables in the database. Those tables are used by the
XML extender. For example the table DTD_REF contains information about DTD files.

The next step is to enable the XML collection. That is not a necessary step. To enable the XML
collection we need to have a DAD file. The DAD file is specified when enabling an XML
collection. The DAD file can contain information on how to compose XML documents from the
XML collection and how to decompose XML documents into the XML collection. If the XML
collection is not enabled, then the DAD file must be specified every time an XML document is to
be composed or decomposed.

In this exercise we will just specify rules for composition of XML documents in the DAD file and
we will enable the XML collection.

First we need to create a DAD file. To do that we need to know how we want the XML document
to be structured and where all the XML data are stored in the database. In other words we need to
define the XML document structure and map it to the XML collection tables and columns.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 46

Here is the structure for the XML documents that we want to compose:

Race

Contestant

Rider Horse

Date Distance

Clubname Time Status

Name Weight Name Birthyear Weight

Attribute

Element

Figure 5 Structure of elements and attributes for the XML documents

The Race element will be the root element of the XML documents. The Race element consists of
two attributes (Date, Distance) and one element (Contestant). The Contestant element can
appear several times within a Race element. Each Contestant element has three attributes
(Clubname, Time, Status) and two elements (Rider, Horse), which in turn have two and three
attributes respectively.

An XML document with that structure would look like this:

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE Race SYSTEM "">
<Race Date="2001-06-05" Distance="1000">
 <Contestant Clubname="Appaloosa Horse Club" Status="finished" Time="00:02:02">
 <Rider Name="Bill Spawr" Weight="48"></Rider>
 <Horse Name="Lake William" Weight="461" Birthyear="1993"></Horse>
 </Contestant>
 <Contestant Clubname="Horseriders" Status="finished" Time="00:02:02">
 <Rider Name="Warren Stute" Weight="55"></Rider>
 <Horse Name="Magellan" Weight="471" Birthyear="1995"></Horse>
 </Contestant>
 <Contestant Clubname="Wild Horse Club" Status="walkover">
 <Rider Name="Simon Bray" Weight="53"></Rider>
 <Horse Name="Spinelessjellyfish" Weight="493" Birthyear="1989"></Horse>
 </Contestant>
</Race>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 47

Creating a DAD file, with the mapping for the transformation from XML data stored in the XML
collection into XML documents, is a little more complicated. In the DAD file that we will create,
we will use SQL mapping. SQL mapping works as follows:
“SQL mapping allows simple and direct mapping from relational data to XML documents through
a single SQL statement… SQL mapping is used for composition; it is not used for
decomposition…The SQL_stmt maps the columns in the SELECT clause to XML elements or
attributes that are used in the XML document. When defined for composing XML documents, the
column names in the SQL statement’s SELECT clause are used to define the value of an
attribute_node or a content of text_node. The FROM clause defines the tables containing the data;
the WHERE clause specifies the join and search condition.” (XML Extender
Administration and Programming).
In addition to that, the SQL statement must contain an ORDER BY clause, where the columns that
identify the rows uniquely must be listed. The column names listed in the SELECT clause must be
unique, if two columns have the same name then one of them must be renamed using the AS
statement (example: SELECT address, address AS address2 …).

Before we start with the structure we defined above, let’s look at a simpler case!

Here is a simple example of a valid SQL statement:

SELECT cname, address FROM club ORDER BY cname

Cname is the primary key of the club table, therefore it appears in the ORDER BY clause.

It is then possible to place the values of the columns into elements or attributes of the XML
document. Here is how it’s done:

To get an element Club we define (in the DAD file) the following tag:

In the DAD file:

Will produce in the XML document:

<element_node name="Club">
</element_node>

<Club>
</Club>

To get an attribute address in the Club element:

In the DAD file:

Will produce in the XML document:

<element_node name="Club">
 <attribute_node name="address">
 </attribute_node>
</element_node>

<Club address="">
</Club>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 48

To add a value to the address attribute from the SQL statement:

In the DAD file:

Will produce in the XML document:

<element_node name="Club">
 <attribute_node name="address">
 <column name="address"/>
 </attribute_node>
</element_node>

<Club address="my address">
</Club>

To add a value to the Club element from the SQL statement:

In the DAD file:

Will produce in the XML document:

<element_node name="Club">
 <attribute_node name="address">
 <column name="address"/>
 </attribute_node>
 <text_node>
 <column name="cname"/>
 </text_node>
</element_node>

<Club address="my address">
 My club
</Club>

So if we put all this (and a little more) together, we should have a DAD file:

First we start with two XML lines. DAD files
are also XML files, that follow the rules
specified in a DTD file (dad.dtd).

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM " C:\Program
Files\IBM\SQLLIB\samples\db2xml\dtd\d
ad.dtd ">

The DAD element is the root element of any
DAD file.
Validation is applicable only when the DAD
file is used for decomposition, therefore we
set it to NO.
The Xcollection element is where all our
code is placed.

<DAD>

<validation>NO</validation>

<Xcollection>

The SQL statement is placed within an
element called SQL_stmt

<SQL_stmt> SELECT cname, address FROM
club ORDER BY cname </SQL_stmt>

These lines make sure that the resulting XML
document contains standard XML lines. The
DOCTYPE has to always match the root
element of the XML document, therefore we
set it to Club.

<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Club SYSTEM ""</doctype>

This is to define the root element of the
resulting XML document

<root_node>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 49

This is the structure of elements and
attributes that we have defined

<element_node name="Club">
 <attribute_node name="address">
 <column name="address"/>
 </attribute_node>
 <text_node>
 <column name="cname"/>
 </text_node>
</element_node>

These are the end tags of all the elements </root_node>
</Xcollection>
</DAD>

Now that the DAD file is ready we can enable the XML collection. The DAD file must be saved as
a file with the extension DAD (for example as D:\xmltemp\club.dad). In the DB2 Command
Window we can execute the following command.

dxxadm

A response with the correct syntax of the dxxadm command comes up:

Now for the complete command that enables an XML collection:

dxxadm enable_collection riding clubcollection D:\xmltemp\club.dad

clubcollection is the XML collection’s name, there can be more than one XML collection enabled
on the same database.
D:\xmltemp\club.dad is the location of the DAD file.

When the XML collection was enabled, a new row was created in the XML_USAGE table. The
new row contains information about the XML collection (the collection name, the DAD file, etc).

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 50

Note that if for some reason the DAD file needs to be altered, it is not enough to change the file.
The XML collection should be disabled (dxxadm disable command) and then enabled with the
altered DAD file. It is only then that the XML collection sees the changes!

Extracting XML documents can be done with the retrieve command. Try to execute the following
command in the Command Window to get more information about the retrieve command:

retrieve

The retrieve command requires a result_tablename argument. It is this table that the XML
documents are going to be stored in. Before we can execute the retrieve command successfully, we
have to define a new table to receive the results. Here is a table definition:

CREATE TABLE results(xmldoc DB2XML.XMLVARCHAR)

DB2XML.XMLVARCHAR is a user defined type that comes with the XML extender. This type is
similar to VARCHAR. We use this type because it is compatible with XML extender user defined
functions that we will use later.

• Create a table according to the definition above! You may need to connect to the database first

with the command connect to riding.

When this table has been created, it can be used as a result table for the retrieve command.

Here is the complete retrieve command:

retrieve riding clubcollection results

The XML documents (5 documents: n=5.0) that have been composed should be stored in the
results table. You can easily check the contents of the results table by executing the following SQL
statement:

SELECT * FROM results

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 51

Let’s go back now to the more complicated structure (from page 46), and create a DAD file.

First we must have an SQL statement that returns all the columns that we need for the XML
elements and attributes. The following SQL statement returns those columns:

SELECT date(race.racetime) as racedate, race.distance, clubname, finishingtime, status,
rname, r.weight AS rweight, hname, h.weight AS hweight, birthyear
FROM race, horse AS h, rider AS r, contestants AS c
WHERE race.raceid = c.raceid
AND ridername = rname
AND clubname = Memberclub
AND clubname = ownerclub
AND horsename = hname

This is a valid SQL statement but it is not valid as a DAD SQL statement. A DAD SQL statement
requires an ORDER BY clause that should contain the column that can identify uniquely each
entity. That is, one column for each entity. This facility of DB2 XML extender is quite new and it
may appear to behave inconsistently. Not all entities’ identifiers need to be part of the ORDER BY
clause, only the ones that lead to a level where many elements of the same type can appear. To
make that more understandable we can look at our structure and the entities that exist:

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 52

Race

Contestant

Rider

Horse

Date Distance

Clubname Time Status

Name Weight

Name Birthyear Weight

Figure 6 Entities of the XML structure
In this structure each entity is associated with one table. So the unique identifier for each entity is
the primary key (or a candidate key) of the associated table. Now there is one problem remaining.
There can only be one column that identifies uniquely an entity, but the tables contestant, rider and
horse require more than one column to identify a row uniquely. (Of course we only need to include
the unique identifiers of the tables race and contestant. The tables rider and horse produce only
one entry per contestant, while there can be several contestants per race.) One way to solve this
problem is to use the table expression and the generate_unique() function to produce a single
column unique identifier10. After making all these changes in the SQL statement, it should look like
this:

10 In certain cases this technique may not work. In those cases we may need to create a unique identifier for an
entity in a different way, for example by concatenating the components of the primary key.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 53

SELECT race.raceid, date(race.racetime) AS racedate, race.distance, cid, clubname,
status, finishingtime, rname, r.weight AS rweight, hname, h.weight AS hweight, birthyear
FROM race, table(SELECT generate_unique() as cid, raceid, ridername, clubname,
horsename, finishingtime, status FROM contestants) AS c, rider AS r, horse AS h
WHERE race.raceid = c.raceid
AND ridername = rname
AND clubname = memberclub
AND clubname = ownerclub
AND horsename = hname
ORDER BY raceid, cid

Creating the element and attribute structure of the XML document is not different from before.

We start with the root element and we continue deeper into the structure.

The root element is the Race element.

Definition in DAD file

Produces in XML document

<element_node name="Race">
</element_node>

<Race>
</Race>

Now for the attributes of the Race element.

Definition in DAD file

Produces in XML document

<element_node name="Race">
 <attribute_node name="Date">
 </attribute_node>
 <attribute_node name="Distance">
 </attribute_node>
</element_node>

<Race Date="" Distance="">
</Race>

Now for the Contestant element which can exist several times within a Race element.

Definition in DAD file

Produces in XML document

<element_node name="Race">
 <attribute_node name="Date">
 </attribute_node>
 <attribute_node name="Distance">
 </attribute_node>
 <element_node name="Contestant"
multi_occurrence=”YES”>
 </element_node>
</element_node>

<Race Date="" Distance="">
 <Contestant>
 </Contestant>
 <Contestant>
 </Contestant>
 .
 .
 .
</Race>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 54

After adding the rest of the elements and attributes of the structure we should have the following:

<element_node name="Race">
 <attribute_node name="Date">
 </attribute_node>
 <attribute_node name="Distance">
 </attribute_node>
 <element_node name="Contestant" multi_occurrence="YES">
 <attribute_node name="Clubname">
 </attribute_node>
 <attribute_node name="Status">
 </attribute_node>
 <attribute_node name="Time">
 </attribute_node>
 <element_node name="Rider">
 <attribute_node name="Name">
 </attribute_node>
 <attribute_node name="Weight">
 </attribute_node>
 </element_node>
 <element_node name="Horse">
 <attribute_node name="Name">
 </attribute_node>
 <attribute_node name="Weight">
 </attribute_node>
 <attribute_node name="Birthyear">
 </attribute_node>
 </element_node>
 </element_node>
</element_node>

The last thing to do is to place the values from the SQL statement in the structure. It is important
that the order that the values appear in the SQL statement is the same with the order that they
appear in the XML structure (even though there can be columns in the SQL statement that do not
appear in the XML structure). When that is done, all the parts of the DAD file are done. By putting
them together (and changing the XML declaration and the DOCTYPE element of the resulting
XML document) we should get this:

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM " C:\Program Files\IBM\SQLLIB\samples\db2xml\dtd\dad.dtd">
<DAD>
<validation>NO</validation>
<Xcollection>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 55

<SQL_stmt>
SELECT race.raceid, date(race.racetime) as racedate, race.distance, cid, clubname, status,
finishingtime, rname, r.weight AS rweight, hname, h.weight AS hweight, birthyear FROM race,
table(SELECT generate_unique() as cid, raceid, ridername, clubname, horsename, finishingtime,
status FROM contestants) AS c, rider AS r, horse AS h WHERE race.raceid = c.raceid AND
ridername = rname AND clubname = memberclub AND clubname = ownerclub AND horsename =
hname ORDER BY raceid, cid
</SQL_stmt>
<prolog>?xml version="1.0" standalone="no"?</prolog>
<doctype>!DOCTYPE Race SYSTEM "d:\xmltemp\race.dtd"</doctype>
<root_node>
<element_node name="Race">
 <attribute_node name="Date">
 <column name="racedate"/>
 </attribute_node>
 <attribute_node name="Distance">
 <column name="distance"/>
 </attribute_node>
 <element_node name="Contestant" multi_occurrence="YES">
 <attribute_node name="Clubname">
 <column name="clubname"/>
 </attribute_node>
 <attribute_node name="Status">
 <column name="status"/>
 </attribute_node>
 <attribute_node name="Time">
 <column name="finishingtime"/>
 </attribute_node>
 <element_node name="Rider">
 <attribute_node name="Name">
 <column name="rname"/>
 </attribute_node>
 <attribute_node name="Weight">
 <column name="rweight"/>
 </attribute_node>
 </element_node>
 <element_node name="Horse">
 <attribute_node name="Name">
 <column name="hname"/>
 </attribute_node>
 <attribute_node name="Weight">
 <column name="hweight"/>
 </attribute_node>
 <attribute_node name="Birthyear">
 <column name="birthyear"/>
 </attribute_node>
 </element_node>
 </element_node>
</element_node>
</root_node>
</Xcollection>
</DAD>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 56

The DAD file contains information about the XML declaration and the DOCTYPE element of the
XML documents to be composed. This information is the following:

The XML document is composed according to XML version 1.0 and it is not standalone (it is
associated to a DTD file):

<prolog>?xml version="1.0" standalone="no"?</prolog>

The DOCTYPE of the XML document is Race. That means that the root element of the XML
document is an element called Race. The SYSTEM specifies that the XML document is supposed
to follow the rules in the DTD file d:\xmltemp\race.dtd:

<doctype>!DOCTYPE Race SYSTEM "d:\xmltemp\race.dtd"</doctype>

The file d:\xmltemp\race.dtd does not exist yet. In section 5.4 we will create this DTD file and we
will use the XML documents composed with this DAD file.

Assuming that the DAD file has been saved as d:\xmltemp\race.dad we can enable an XML
collection called racecollection by submitting the following command in the Command Window:

dxxadm enable_collection riding racecollection d:\xmltemp\race.dad

When the new XML collection has been enabled, use the retrieve command to compose XML
documents and place them in the results table (You may want to remove the previous XML
documents from the results table first) :

retrieve riding racecollection results

Five XML documents are now stored in the table results.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 57

5.3 Extract XML documents into XML files
So far we have composed XML documents and stored them in a table. It can be desired to extract
these XML documents from the database and keep them as separate files. To do that, we will use
the XML extender’s Content function.

Like all other functions, the Content function can be used in a SELECT statement. The Content
function has three different sets of parameters. The one that we will use is the following:

Content(xmlobj, filename)

xmlobj is the XML document as an XMLVARCHAR.
Filename is a string with the fully qualified filename and location of the file where the XML
document will be saved.
When this function is executed it returns the filename to where the XML document was saved.

Here is an example of how to use this function:

SELECT db2xml.Content(xmldoc, 'd:\xmltemp\my.xml') FROM results

This command produces a file called d:\xmltemp\my.xml which contains the XML document that
is stored in the xmldoc column of the results table. The problem with this command is that it tries
to save each and every XML document from the xmldoc column as a file called
d:\xmltemp\my.xml. Consequently only the last XML document gets saved. The next figure shows
what this command returns:

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 58

An easy way to produce unique names for all the XML files saved, is to use the
generate_unique() function to produce the filename:

SELECT db2xml.Content(xmldoc, ('d:\xmltemp\my' CONCAT HEX(generate_unique())
CONCAT '.xml')) FROM results

This command will produce a unique key for every row in the results table, and then concatenate a
hexadecimal representation of that unique key into the filename. The next figure shows a result of
this command:

The files are now stored on the hard disk and can be viewed with any editor, attached to an email,
etc.

5.4 Store XML documents in an XML column
In this section we will create an XML column and store in it the XML documents that we generated
before. This is basically the same procedure that we followed in section 3.1 when we created a
database and stored in it the XML documents for the books. In this section we will look closer and
in more detail at how the procedure works. We will do the following:

1. Create a database with a table where the XML documents will be stored
2. Enable the database for XML
3. Prepare a DTD for controlling the incoming XML documents
4. Store the DTD in the DTD_REF table
5. Prepare a DAD file for the XML column
6. Enable the XML column
7. Insert XML documents into the XML column

• Start by creating a database! You will need to disconnect from the other database if you are still

connected. Use the command DISCONNECT riding.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 59

Here is a command that creates a database:

CREATE DATABASE myxmlcol

The database is now ready to be enabled for XML.

• Enable the database for XML by issuing the following command in the Command Window:

dxxadm enable_db myxmlcol

• Connect to the new database and create a table for the XML documents! The table should have
a column of one of the three XML extender data types (XMLVARCHAR, XMLCOLB,
XMLFILE). Here we use XMLVARCHAR.

CONNECT TO myxmlcol
CREATE TABLE xmlcol (xmldoc DB2XML.XMLVARCHAR)

Note that this table can contain many other columns. Those columns do not interfere with the
XML column.

When an XML document is inserted into the database, it has to be controlled. If there is no control
of incoming XML documents, the database will soon become corrupt. To control an XML
document we need a set of rules of what is and is not allowed. Those rules can be defined in a DTD
file.

Before defining a DTD, we must know the exact structure of the XML documents that we want the
DTD file to control (and accept). The XML documents that we want to insert into the XML
column, are the ones we created earlier from the XML data in the XML collection. So the structure
is already defined.

Now let’s create a DTD file to represent that structure.

First we have a Race element. <!ELEMENT Race>

The Race element has a sub-element called
Contestant, that can occur zero or more
times (denote this with an asterisk after the
element name).

<!ELEMENT Race (Contestant*)>

The Race element has two attributes (Date
and Distance).

<!ELEMENT Race (Contestant*)>
<!ATTLIST Race
 Date CDATA #REQUIRED
 Distance CDATA #REQUIRED>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 60

We continue with the Contestant element. <!ELEMENT Contestant>

The Contestant element has two sub-
elements called Rider and Horse, that can
occur once and only once within a
Contestant element.

<!ELEMENT Contestant (Rider, Horse)>

The Contestant element has three attributes
(Clubname, Status and Time) The first two
have to be there, the third can be missing.
Status can only be one of four predefined
values: finished, walkover, disqualified and
dropout.

<!ELEMENT Contestant (Rider, Horse)>
<!ATTLIST Contestant
 Clubname CDATA #REQUIRED
 Status (finished | walkover | disqualified

| dropout) #REQUIRED
 Time CDATA #IMPLIED>

The Rider element. The Rider element has no
content.

<!ELEMENT Rider EMPTY>

The Rider element has two attributes (Name
and Weight). Name is required, Weight is
not.

<!ELEMENT Rider EMPTY>
<!ATTLIST Rider
 Name CDATA #REQUIRED
 Weight CDATA #IMPLIED>

The Horse element. The Horse element has
no content

<!ELEMENT Horse EMPTY>

The Horse element has three attributes
(Name, Weight and Birthyear). Only Name
is required

<!ELEMENT Horse EMPTY>
<!ATTLIST Horse
 Name CDATA #REQUIRED
 Weight CDATA #IMPLIED
 Birthyear CDATA #IMPLIED>

• Put all the elements together and save the file, for example as d:\xmltemp\race.dtd

Here is the content of the file race.dtd:

<!ELEMENT Race (Contestant*)>
<!ATTLIST Race
 Date CDATA #REQUIRED
 Distance CDATA #REQUIRED>
<!ELEMENT Contestant (Rider, Horse)>
<!ATTLIST Contestant
 Clubname CDATA #REQUIRED
 Status (finished | walkover | disqualified | dropout) #REQUIRED
 Time CDATA #IMPLIED>
<!ELEMENT Rider EMPTY>
<!ATTLIST Rider
 Name CDATA #REQUIRED
 Weight CDATA #IMPLIED>
<!ELEMENT Horse EMPTY>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 61

<!ATTLIST Horse
 Name CDATA #REQUIRED
 Weight CDATA #IMPLIED
 Birthyear CDATA #IMPLIED>

Now we can insert the DTD file into the DTD_REF table (which was created when we enabled the
database for XML).

Execute the following INSERT statement, to insert the DTD file into the DTD_REF table of the
database:

INSERT INTO db2xml.DTD_REF VALUES ('d:\xmltemp\race.dtd',
db2xml.XMLClobFromFile('d:\xmltemp\race.dtd'), 0, 'userX', 'userZ', 'userY')

The first value specifies a name for the inserted DTD file, this is also the primary key of the
DTD_REF table. It is usual to set the fully qualified name of the file as this value.
The second value is the DTD file itself. This value has to be of XMLCLOB type, hence we use the
XML extender’s function XMLClobFromFile to import the DTD file into an XMLCLOB.
The third value (called USAGE_COUNT) shows how many DAD files refer to this DTD file. It
has to always be set to 0 when a DTD file is first being inserted.
The rest of the parameters are optional and specify the following: AUTHOR, CREATOR,
UPDATOR.

When a DTD file has been inserted into the DTD_REF table, it can be referenced by DAD files
associated with XML columns or XML collections in the database in question.

Note that as with DAD files, if the DTD file has to be altered then it is not enough to change the
file. The row for the old DTD has to first be removed from the DTD_REF table. If the DTD is in
use then the XML column or XML collection that is using it has to first be disabled. It is always
possible to see if a DTD in the DTD_REF table is in use by checking the usage_count value for a
specific DTD.

We can now define the DAD file for the XML column. The DAD file will contain a reference to
the DTD file and information about the side tables. It is not important to have side tables but we
will use one side table to illustrate how this feature works. We will have a side table with two
columns: Date and Distance.

The DAD file starts, as before, with the following lines:

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM " C:\Program
Files\IBM\SQLLIB\samples\db2xml\dtd\dad.dtd">
<DAD>

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 62

Then we have an element called dtdid, where we define the DTD to be used to control incoming
XML documents:

<dtdid>d:\xmltemp\race.dtd</dtdid>

Then the validation element, in this case we set the validation to YES. This activates the control of
the incoming XML documents:

<validation>YES</validation>

Now we have the Xcolumn element:

<Xcolumn>

Within this element we can specify the side tables (in this case only one side table), and the
mapping between elements or attributes and the columns of the side tables. In this way the side
tables will be automatically updated every time a new XML document is inserted. Here is the
content of the Xcolumn element:

A table element with a name attribute. That is
the name of the side table.

<table name=”race_st”>

 <column name=”Racedate”
 type=”date”
 path=”/Race/@Date”
 multi_occurrence=”NO”/>

A column element for each column of the side
table. The name attribute indicates the name of
the column, the type attribute indicates the data-
type of the column, the path attribute indicates
where in the XML document’s structure to get
the value from, the multi_occurrence attribute
indicates whether or not the specified path can
appear many times within an XML document.
(Note that an empty element can be closed with
a “/” in the end of the opening tag)

 <column name=”Racedistance”
 type=”integer”
 path=”/Race/@Distance”
 multi_occurrence=”NO”/>

And the closing tag of the table element. </table>

And of course the closing tags of the Xcolumn element and the DAD element:

</Xcolumn>
</DAD>

• Now save the DAD file (for example d:\xmltemp\racecolumn.dad)!

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 63

• Enable the XML column! Here is the command:

dxxadm enable_column myxmlcol xmlcol xmldoc d:\xmltemp\racecolumn.dad

where myxmlcol is the database name, xmlcol is the name of the table and xmldoc is the name of
the column in the table.

Now that the XML column has been enabled, we can insert XML documents into it. To insert an
XML document we can execute an INSERT statement. When inserting an XML document into a
column of a table, we must always think of the data type of the column. The column, to which we
will insert the XML documents is of the following type: DB2XML.XMLVARCHAR. Fortunately,
there is a set of functions for transforming XML documents to and from all the different XML data
types. One of those functions is this: DB2XML.XMLVarcharFromFile(). This function takes one
argument: the full filename as a string and returns the content of that file (the XML document) as a
DB2XML.XMLVARCHAR. Here is an example of an INSERT statement:

INSERT INTO xmlcol (xmldoc) VALUES
(DB2XML.XMLVarcharFromFile('d:\xmltemp\my20000603132654013484000000.xml'))

The file d:\xmltemp\my20000603132654013484000000.xml is just one of the files we
generated before (see section 5.3). The filenames are random, so the files that you have, have
different filenames from the filenames that appear in section 5.3.

When the XML document has been inserted into the database, the side tables have also been
updated. In our case there should be one new record in the race_st table.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 64

After inserting all five XML documents in the XML column the content on the side table is
following:

If the XML document does not comply with the DTD file, specified in the DAD file, then it will be
rejected. That can easily be tested; try to insert an XML document with the wrong type of elements
or attributes.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 65

Here is what happened when an invalid XML document was inserted into the XML column:

An XML document is rejected when:

• The element structure is not as specified in the DTD file
• The attributes of the elements are not following the rules of the DTD file
• The SYSTEM of the XML document (specified in the DOCTYPE element) is not the same as

the one in the DAD file. Both should point to the same DTD file.

On the other hand an XML document that is defined as standalone (in the XML declaration) can be
accepted if it does not break any of the rules above.

The XML column can now be queried in the way we saw in section 4.2.

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences IS4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

 66

6 Internet Resources
XML & DTD Tutorials

http://L238.dsv.su.se:86/tutorial/

http://www.w3schools.com/xml/default.asp

http://www.spiderpro.com/bu/buxmlm001.html

http://msdn.microsoft.com/library/en-us/xmlsdk/html/79c78508-c9d0-423a-a00f-
672e855de401.asp

DB2 XML extender

http://www-4.ibm.com/software/data/db2/extenders/xmlext/

XML/SQL

http://docs.openlinksw.com/virtuoso/fn_XMLELEMENT.html

7 Epilogue
When all this is done, you should have quite a good understanding of how to use DB2 to manage
XML documents and XML data.

I hope you have enjoyed this compendium. Please give me feedback!

The Author

nikos dimitrakas

