DEPARTMENT OF COMPUTER
AND SYSTEMS SCIENCES
SU/KTH

D82 & XML

v.4.0.1

I54/2i1242/2i4042

Models and languages for object,
relational and web databases

Spring Term 2007

http://www.nikosdimitrakas.com/courses/1S4/

ot dimitral

I

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Table of contents

N LT oo [0 Tox o] o OSSR P PP P VRPRPRPPRPRPI 3
N (0] 0 T=T o F= Lo [PP U VRV R PRTUPOP 3
N I L= 0 AV o] o0 T o SRRSO 3
1.3 Completed ASSIGNMENT REQUITEMIENTS.ciiiiiiirieieeee ettt 3

2 XML & DB2.....c et e e rra e nraae s 4
2.1 XIMIL bt R R bbb bR e R e ARt e Rt Rt Rt bbbt eas 4
2.2 XML N DB2.....oe ettt ettt ettt e et e e s be e s he e s bt e eabe e s beeabeeebeesbeeeaeeebesbeesbeesbeesteesrreas 6

3 DALADASES ...ttt bttt R ettt R e e bt et e ere e nbeeaeeneenre e 7
3L BOOKS. ..ttt bR b bR R R R R bbbttt R et b ettt n s 7
K o (o] £ T-l o 11 o [OOSR RUR TP P U P PRPRPRURTPN 10

4 Compulsory EXercises and ASSIGNIMENTSccveiiiieiieieiieeseesie e sre et eesie e e sre e e e sre e 11
4.1 XML SPECITIC TUNCLIONS ...ttt ettt 11

O = OSSPSR 12
4. 1.2 EXEFACE FUNCLIONS. ...ttt ettt bbbkt R et s bbbttt b e 13
I Lo P = 0 T o PSS 15
4.1.4 Functions for generating XML - XML/SQL fUNCLIONS.........cciiiiiiiiiiicieseceesese e 15
4.2 Queries against the XML column exXplaingd............cccooeiiiiii s 16
4.2. 1 REITEVING AL ...ttt bbb bbb bbbt bbbtk bbb b ettt b e 16
4.2.2 MANIPUIALING TALA ..o iviieeiieieeee e bbbttt e b e bbb e bt e bt e s e et e ebeebeebeeneeneennenbesbeebenes 33
4.3 Queries that produce XML eXplaiNedcccooiiiiiiiiiii e 35
N [0 10 1< 1 3T 44

5 VOIUNTANY EXEICISES. ...cuviiveeieitte ittt ste e te et st et s et e e st e e te e s e sbe e teeseesre e teenbeaneesteeneenreeneeanes 44
5.1 Create the databasecccoiveiiiiiiee ettt e st s e sbeere et sre e e e reereeneenreenes 44
5.2 Enable the database for XML (as an XML collection) and compose XML documents............... 45
5.3 Extract XML documents int0 XML filES.......ccooiiiiiiiiii i 57
5.4 Store XML documents in an XML COIUMNccoiiiiiiieiiii e 58

B INTEINET RESOUICESeetiiiitieitee ettt etttk et ekt et e e s b et et e e shs e et e e ese e e be e shn e e beesnbeebeeneneennes 66

7 =1 11 o 1SS 66

FIgUIe 1 XML QN0 DTD ..ottt bbb bbbt 4
Figure 2 Main components of XML IN DB2 ..o 7
Figure 3 XML structure for the BoOK XIML fil€S........ccoiiiiiiii i 8
Figure 4 Database model of horse riding database ..o 10
Figure 5 Structure of elements and attributes for the XML doCcuments...........cccocevenvnvninienenn. 46
Figure 6 Entities 0f the XIML SIIUCLUIEccveiiiie et nneas 52

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

1 Introduction

This compendium contains the following:

An introduction to XML

An introduction to DB2’s facilities for handling XML data

Compulsory exercises on using DB2 for querying and manipulating XML data, as well as
producing XML as the result of SQL statements

Voluntary exercises on using DB2 to transform relational data to XML data

It is strongly recommended that you read through the entire compendium (except from chapter 5)
before starting to work with the exercises.
1.1 Homepage

Information about this compendium can be found here:
http://www.nikosdimitrakas.com/courses/IS4

The following can be found at this address:

o FAQ - Here there is a list of corrections and explanations that come after the course start.

e Links - Internet resources that can be helpful when working with the compendium.

e Files - The newest version of the compendium and all the files needed to complete the exercises
in the compendium (not the solutions of assignments). These files are also available under
\\DB-SRV-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML

1.2 The environment
The following facilities will be used:

e IBM DB2 Universal Database version 8.2 fp9a, with XML extender
= DB2 Command Window
= DB2 Command Editor
= DB2 Information Center

= Editor (of your choice)

= Web browser

More information on DB2 and its facilities can be found in the compendium “Introduction to IBM
DB2 v.8.2 fp9a for Microsoft Windows XP Professional”.

1.3 Completed Assignment Requirements

All the exercises in chapter 4 are compulsory. For the assignments in section 4.4 you have to
send in electronically to the conference “MLDB Assignments” in FirstClass the following:

1. SQL statements for all the queries.
2. Execution results for the first 6 queries.

Don't forget to mention the group number and the names of all the group participants.

The deadline for this assignment is the 30" of March 2007.

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

2 XML & DB2

This chapter introduces XML and DB2’s facilities for working with XML. This is not a complete
reference of either XML or DB2’s XML extender. The following sections only present the aspects
of XML and DB2 that are needed to complete the exercises that follow.

2.1 XML

XML (eXtensible Markup Language) is a language with many uses. One of them is to transport
data between different systems.

XML consists of two languages, one language for the actual XML documents and one language for
specifying how the XML documents’ should be structured, called DTD? (Document Type
Definition). Not all XML documents are associated to DTDs. Here is an example of an XML
document and its DTD:

XML Document (saved in afile called “book.xml”) DTD file “book.dtd”)
<?xml version="1.0"?> <?xml encoding="US-ASCII"?>
<IDOCTYPE book SYSTEM "d:\dtd\book.dtd"> <!ELEMENT book (author*,chapter*,price)>
<book> <IELEMENT author (#PCDATA)>

s q_man _n " <IELEMENT chapter (section*, footnote*)>

<chapter id="1" date="07/01/1997"> . SIATTLIST chapterid (1]2]3) #REQUIRED
<section>This is a section in Chapter One.</section> date CDATA #IMPLIED>
</chapter> <IELEMENT price (#PCDATA)>
<chapter id="2" date="01/02/1997"> <IATTLIST price date CDATA #IMPLIED
<section>This is a section in Chapter Two.</section> time CDATA #IMPLIED
<footnote>A footnote in Chapter Two is here.</footnote> timestamp CDATA #MPLIED>
</chapter> <IELEMENT section (#PCDATA)>
<price date="12/22/1998" time="11.12.13" timestamp="1998-12-22-11.12.13"> - E-EMENT footnote (#PCDATA)>
38.281
</price>
</book>

@ Both languages are case sensitive!

~ D An XML document can refer to a DTD file.
A DTD file can be associated with many XML
documents. When an XML document refers to a
BIE XML DTD file then the XML documents content is
¢ »| document supposed to follow the rules defined in the DTD
document flle
a__)

Figure 1 XML and DTD

2.1.1 XML Explanation
Elements:

In the previous example chapter is an element. Everything from the <chapter> to the
</chapter> constitutes an element chapter.

! The term XML document refers to a file with the extension .xml.
2DTD is the older language for defining XML structures. Another “newer” language is XMLSchema, which is
somewhat more powerful than DTD.

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Every XML document must have a root element, an element that has its start tag in the beginning
of the XML document and its end tag at the end of the XML document. This element may appear
only once in the XML document.

Attributes:

The element chapter has an attribute id and an attribute date. All attributes of an element appear
within the starting tag of the element. Attributes have a value that is within double quotation marks

(“).

Structure:

<element attributel="value” attribute2="value2”>
element content

</element>

The element content can be empty, text or other elements.
If the element content is empty then the element can look like this:

<element attributel="value” attribute2="value2”/>
If an end tag is used then no character are allowed between the starting tag and the end tag:
<element attributel="value” attribute2="value2” ></element>

XML declaration & DOCTYPE element

The first two lines of any XML document are always the XML declaration & the DOCTYPE
declaration:

XML declaration:

<?xml version="1.0" standalone="no"?>

In the XML declaration we define the XML version and whether there is a DTD file with rules for
the XML structure or not

DOCTYPE declaration:

<IDOCTYPE Book SYSTEM "d:\dtd\book.dtd">

The DOCTYPE defines the root element of the XML document and the SYSTEM points out the
DTD file for the XML document.

2.1.2 DTD Explanation
The DTD file contains rules to be followed when constructing an XML document.

It defines the elements that can appear in the XML document:
<IELEMENT element-name>

It defines the elements that can appear within an element:
<IELEMENT element-name (element2-name)>

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

or the type of the element content:
<IELEMENT element-name (#PCDATA)>

It also defines the attributes that an element can have, with the appropriate rules (the type of the
attribute, whether it has to be there or not, a default value, etc.):
<IATTLIST element-name

attributel-name CDATA #REQUIRED

attribute2-name CDATA #IMPLIED>

For more help on how to construct an XML document visit one of the following tutorial sites
(tutorials for both XML and DTD):

e http://www.w3schools.com/xml/default.asp
e http://www.w3schools.com/dtd/default.asp
e http://www.spiderpro.com/bu/buxmImO001.html

2.2 XML in DB2

DB?2 provides two ways for working with XML documents and XML data®:
e XML collection
e XML column

In addition to that, DB2 implements a large part of the XML functionality described in the SQL
2003 standard. Some of these functions can be used to transform ordinary relational data into XML
documents. Some of this functionality overlaps with the functionality provided by an XML
collection.

2.2.1 XML collection

When XML data is stored in a relational database, then this database is called an XML collection.
DB2 XML extender provides functions for decomposing XML documents into relational data to be
stored in the XML collection, and functions for composing XML documents from XML data stored
in the XML collection.

Since XML documents are based on hierarchical models and relational databases are based on
relational models, it is important to have a mapping between the two models. This mapping can
then be used for transformations in both directions. The mapping is defined in DAD (Document
Access Definition) files. A DAD file is an XML document that has the extension .dad and follows
the rules defined in the file dad.dtd*. The DAD file is then used when enabling the XML collection.
At that time DB2 verifies that the tables referred in the DAD file exist, otherwise they are created.
In chapter 5 there is a more detailed description of how to do all this in practice.

® With the term XML data we refer to the contents of XML documents, even when the data has been
transformed. Data that is going to become the content of an XML document can also be referred to as XML
data

* The file dad.dtd can be found in the following directory:

C:\Program Files\IBM\SQLL IB\samples\db2xmi\dtd on all the prepared disks or any computer that has the
DB2 XML extender installed.

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

2.2.2 XML column

XML column is a different approach than XML collection. XML column is an XML enabled
database that contains intact XML documents. Those XML documents are stored in a certain table
that has a column of one of these three types: XMLCLOB, XMLVARCHAR, XMLFile. That
column has to be enabled and associated with a DAD file. In the DAD file there can be a reference
to a DTD file for validating any inserted XML documents (XML documents that we insert to the
database), and rules for creating side tables® and storing XML data in them. The DTD file must
have been registered in the DTD_REF table that is created when a database is being enabled for
XML.

There are more details about this in chapter 5. In chapter 4 we will also use an XML column.

All the XML components are stored
in the database. The XML documents,
DTD DTD files and I_DAD files are stored_in
XML rules for user tables, while the DAD.DTD file

document XML

FrTET Is stored in the database manager.

The database can of course contain
other non XML specific components
. too. Those components are not
DAD file DAD.DTD represented in Figure 2.

rules for
k_) DAD files

Database

Figure 2 Main components of XML in DB2

3 Databases

As mentioned earlier this compendium contains some compulsory and some voluntary
exercises/assignments. For the compulsory part (described in chapter 4) we will use a database
about books and a database about horse riding. For the voluntary part (described in chapter 5) we
will use the database about horse riding.

3.1 Books

This database is of the type XML column described in section 2.2.2. There are a number of
commands that need to be executed in a certain sequence in order to create this database. We also
need the XML data (stored as XML files). 15 XML files, 1 DTD file, 1 DAD file and a script for
creating and populating the database can be found at the following network address:

WDB-SRV-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML\Books

So what do all the files do and what do the commands in the script do?

* A side table is a table that contains data from the XML document. The side tables are used to improve
performance when searching through the XML documents. Usually, only some of the XML data is placed in the
side tables — the data that is used most frequently when searching.

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

15 XML files (book01.xml — book15.xml)
These files contain the actual data about the books. More precisely they contain the
title, the genre, the original language, data about the authors, data on each edition and
each translation and the price. The following figure shows the structure of the XML

files.
lIII%HHHIIII
Original
anguage
I|I|HHHHHIIII lII%HHHHHIIII

SDSBN\ OB

Language
Element

Figure 3 XML structure for the Book XML files

1 DTD file (Book.dtd)
This file contains the rules for the XML structure described in Figure 3.

1 DAD file (bookcolumn.dad)
This file contains the information required by DB2 for creating the XML column
where the XML files will be stored. It also provides information about the DTD to be
used for validating the inserted XML files.

1 script (bookxmldb.bat)
This script contains all the commands necessary for creating and populating the
database (also called “XML column”). In detail the commands included in the script
are:

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

1. DB2 CREATE DATABASE book on D:
This command creates a database called book on drive D.

2. Dxxadm enable_db book
This command tells DB2 that the database book will be used for XML data. DB2
creates some infrastructure for the XML data. This infrastructure includes some
system tables and some XML specific data-types.

3. DB2 CONNECT TO book
Creates a connection to the database book that was just created.

4. DB2 CREATE TABLE xmlcol (xmldoc DB2XML.XMLVARCHAR)
Create a new table called xmlcol with one column called xmldoc of a special
XML data type.

5. DB2 INSERT INTO db2xml.DTD_REF VALUES (‘D:\xmltemp\Book.dtd’,
db2xml. XMLClobFromFile('D:\xmltemp\Book.dtd’), O, ‘userX’, ‘userY’,
‘userz’)

This command inserts the DTD file into the database, in the system table
DTD_REF. This DTD file will be later used for controlling all the incoming
XML files.

6. Dxxadm enable_column book xmlcol xmldoc d:\xmltemp\bookcolumn.dad
This command tells DB2 which column of what table will be used for inserting
the XML files. It also specifies (in the DAD file) the DTD to be used for checking
the incoming XML files.

7. DB2 INSERT INTO xmlcol (xmldoc) VALUES
(DB2XML.XMLVarcharFromFile(‘d:\xmltemp\bookQ1.xml"))
This is the first of 15 commands that insert the XML files into the database.

8. DB2 DISCONNECT book
Finally the scripts disconnects from the database.

In order to run the script you will need to first make sure that DB2 has been started and then copy
all the files from the directory books into d:\xmltemp (if this directory doesn’t exist you have to
create it). To actually run the script you will need a DB2 Command Window. Go to d:\xmltemp
(use the command cd /d d:\xmltemp). Run the script by using the command bookxmldb.

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

& DB2 CLP

IC:“Program Files“~IBM~S5QLLIB~BIN>cd ~d d:~xmltemp A|
D:zsxmltemprhookxmldh

| | v

The script may take a few minutes to complete. When it has finished (the prompt has returned), the
database is ready.

3.2 Horse riding

This database is necessary for some of the exercises in chapter 4 as well as for the voluntary
exercises in chapter 5.

This database consists of five tables. The tables are connected with foreign keys as shown in Figure
4,

RNAME
WEIGHT
MEWMBERCLUB
ErAIL

OWNERCLLB
HNANE
WEIGHT
COLOR

SEX
BIRTHYEAR.

Figure 4 Database model of horse riding database

Scripts for creating and populating the database can be found here:
\\DB-SRV-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML\Horse riding

Simply run the two scripts (first the riding.tables.script and then the riding.insert.script) in the DB2
Command Editor! Pay attention to the statement termination character!

10

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

4 Compulsory Exercises and Assignments

This chapter contains a number of exercises that are compulsory for completing the course
assignment. For these exercises we will use the two databases that we created in sections 3.1 and
3.2. In the section that follows (section 4.1) you will find a description of some functions that we
will use for querying and manipulating data in the XML column and for producing XML from
relational data. After that we will go through a few queries that use these functions (sections 4.2
and 4.3). Finally, in section 4.4 you will be given some questions to solve.

4.1 XML specific functions

In this section we will look at the most common functions that DB2 provides for querying and
manipulating data in an XML column, as well as functions for composing XML as the result of an
SQL statement.

An XML column consists of XML documents stored in a column of a relational table. So, to extract
a specific part of the XML documents we need to specify where in the XML structure the desired
data is located. We call this the path (also known as the location path).

There are two groups of functions:

1. Extract functions that are used to retrieve values from XML documents.
There are 20 different extract functions, grouped in two groups. We will look at some
functions from each group. The only difference between the functions of each group is the data
type they return (there are 10 data types). The one group of functions returns atomic values, the
other returns multiple values.

2. The update function, which is used for changing parts of XML documents®.
This function can be used to alter attribute and element values of an XML document and returns
the altered version of the XML document.

The path is an important parameter for both the extract functions and the update function. All
these function "belong” to the DB2XML schema. This means that when using the functions we
must always qualify them with the schema name (we will see how this is done later). Before we
look at the functions, we will take a quick look at the path and its syntax (in section 4.1.1).

For data stored in a usual relational database, we have a set of functions for creating XML. These
functions can be incorporated in the SELECT clause of an SQL statement in order to transform the
result into a user defined XML structure. There are several functions, but we will only look at the
following:

1. XMLELEMENT, XMLFOREST and XMLATTRIBUTES.
With these functions we can create elements and attributes.
2. XMLAGG.
With this function we can aggregate several values.

® This function can also be used to delete a part of an XML document. If you wish to delete the entire XML
document, then you can simply delete the row where the XML document is stored (with a standard SQL
DELETE statement).

11

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

3. XMLCONCAT.
With this function we can concatenate several elements.

4.1.1 Path
A path can have the following form”:

lelement/element/@attribute

There may be one or more elements and there can be an attribute at the end (we denote that it is an
attribute with the at-sign (@). For the structure of the Book XML documents the following are
valid paths:

/Book/@Title

/Book/Author/@Name

/Book/Edition
/Book/Edition/Translation/@Language
/Book

This kind of paths is in most cases sufficient. Sometimes, on the other hand it may be necessary (or
just quicker) to use the advanced path syntax. This syntax requires the following extras:

e Filtering (only attribute values)
For example the following path finds only Names of Authors from Austria:
/Book/Author[@Country="Austria"]//@Name

e Use of wildcards
The following example finds an attribute Year at any sub-element (denoted by a *) of the
element Book
/Book/*/@Year

e Support for recursion
This is supported according to the documentation, but not by the actual DB2.

These can of course be combined in creating more complex paths. Here is an example that
represents the price on any English book from year 2002 that has been translated into Swedish:

/Book|@OriginalLanguage="English"]/Edition[Year="2002"]/*[Language="Swedish"]/@Pric
e

More information on the path syntax and use can be found in the "XML Extender Administration
and Programming" document (pages 144-145) that can be found at the following addresses:

o \\DB-SRV-1\StudentCourseMaterial\lS4 spring 2007\DB2-XML\XML Extender
Administration and Programming v8 (c2712340).pdf
¢ http://publibfp.boulder.ibm.com/epubs/pdf/c2712340.pdf

" This is actually the syntax of the simple location path. We will see later that there is an advanced version of the
path syntax.

12

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

4.1.2 Extract functions

As mentioned earlier there are two groups of extract functions. They all follow the same syntax and
take the following two parameters:

1. XML document This is the column name where the XML document is stored
2. Path This is the XML path that will be extracted

The first group contains 10 functions for extracting atomic values from an XML document. The
functions are:

extractinteger() It returns an integer value of the extracted path.
extractSmallint() It returns a smallint value of the extracted path.
extractDouble() It returns a double value of the extracted path.
extractReal() It returns a real value of the extracted path.
extractChar() It returns a char value of the extracted path.
extractVarchar() It returns a varchar value of the extracted path.
extractDate() It returns a date value of the extracted path.
extractTime() It returns a time value of the extracted path.

extractTimestamp() It returns a timestamp value of the extracted path.

extractCLOB() It creates a new XML document that has as its root element the last
element that appears in the path parameter. The new XML
document is returned as a CLOB. The path sent to this method
cannot have an attribute at the end.

The second group contains 10 functions for extracting multiple values from an XML document.
This means that the same path can appear more than once in the XML documents. In the XML
structure for the Book XML documents the following are examples of paths that may have multiple
values:

/Book/Author/@Name

/Book/Edition/Translation

/Book/Edition/@Price

The functions are:

Extractintegers() It returns integer values of the extracted path.

ExtractSmallints() It returns smallint values of the extracted path.

13

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

ExtractDoubles() It returns double values of the extracted path.

ExtractReals() It returns real values of the extracted path.

ExtractChars() It returns char values of the extracted path.

ExtractVarchars() It returns varchar values of the extracted path.

ExtractDates() It returns date values of the extracted path.

ExtractTimes() It returns time values of the extracted path.

ExtractTimestamps() It returns timestamp values of the extracted path.

ExtractCLOBs() It creates new XML documents that has as their root element the
last element that appears in the path parameter. The new XML
documents are returned as CLOBs. The path sent to this method
cannot have an attribute at the end.

These functions are most useful together with the table function. The table function takes one
parameter and makes a table out of it. The following example makes a table of all author names in
the XML document:

table(extractVarchars(xmldoc, '/Book/Author/@Name")

This would of course need to be in a context where xmldoc is defined.

When using one the extract functions with the table function, then a table with one column is
created. This column is named differently depending on the extract function used. The column is
always named according to the following convention:

"returned” + data type

So in the example above the column of the created table would be named returnedVarchar.

All the 20 functions can at times return warnings and errors. These can depend on many reasons.
The most common are:

e A path was not found
e A value of a path was incompatible with the type to be extracted
e A path appeared more than once (when using the first group of functions).

The full description of the functions and their associated error and warning codes can be found in
the "XML Extender Administration and Programming" document that can be found under Start >
Programs > Databases > IBM DB2 > DB2 XML Extender > XML Extender Admin and
Programming.

14

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

4.1.3 Update function

The update function receives three parameters and returns an XML document. The update function
works with one XML document at a time. The three parameters are:

1. XML document The column name where the XML document is stored

2. Path This is the path within the XML document that will be updated

3. New value This is the value that the element or attribute at the defined path will be
updated to.

The update function does not affect directly the XML documents stored in the XML column. It
merely reads them and creates copies of them. Those copies must replace the original XML
documents in the XML column if the changes are to be saved. That has to be done with a standard
SQL UPDATE statement. We will see examples of that in section 4.2.2.

It is important to know that the update function will update all the occurrences of the defined path
to the new value. The following example would change the country of all the authors to "India™:
Update(xmldoc, '/Book/Author/@Country’, ‘India’)

This would again need to be in a context where xmldoc is defined.

4.1.4 Functions for generating XML - XML/SQL functions
In this section we look at the functions DB2 provides for transforming relational data into XML
documents directly in SQL SELECT statements®.

Here is a more detailed description of the functions used to compose XML as the output of SQL.

XMLELEMENT (name, Creates an element of the given name and populates it
content/attributes/sub-elements) with the given content, attributes and sub-elements.

XMLFOREST (argl [AS labell], Creates a forest of elements from the given list of

arg2 [AS label2?], ..., argN [AS arguments with the labels as element names. If a label |

labelN]) omitted then the argument’s name will be used as the
element name.

XMLATTRIBUTES (argl [AS Similar to XMLFOREST, but the result is a list of

labell], arg2 [AS label2], ..., attributes. This function can be used as a parameter to
argN [AS labelN]) the XMLELEMENT function.
XMLAGG(element) Aggregates all the elements generated by the parameter

so that they can become sub-elements of another
element. XMLAGG is regularly a parameter to an
XMLELEMENT and it has an XMLELEMENT as its
parameter. XMLAGG can also be combined with the
GROUP BY clause of the SQL statement.

XMLCONCAT(element1, Concatenates the elements of the parameters. Similar to
element2, ..., elementN) concatenating strings.

® These functions are actually defined in SQL 2003.

15

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

4.2 Queries against the XML column explained

All the functions mentioned in the previous sections can be used in SQL statements. In the sections
that follow we will look at some examples that require the use of extract and update functions.

All the commands in this section can be executed in the DB2 Command Editor. Don't forget to
adjust the command termination character since many of the commands will be several rows long.
It is also recommended that you change the way the output/result is shown in the DB2 Command
Editor. In the options select the following (in the menu Tools > Tools Settings > Command Editor):

Uncheck the Display results for a single query on the Query Results page

Toolg Settings Tools Help
LHEBPEEEED FReEB O <

General | Dacumertation | Forts | OS/390 and z/0S | Health Certer Status Beacon | Scheduler Settings Command Editor

M= |

~Execution and history

~ Automatically commit SAL statements
[Stop execution if errors ocour

~ Limnit the number of elements stored in command history

| 100

™ Log command history to file

| =
—OutpLt
I Litnit the numker of lines displayed in output I~ Enakle wrapping of output tesxt
| 1000
[Log output to file [~ Display SQLCA data
I ;I * Do not display SQLCODE or SALSTATE

" Dizplay SQLCODE

" Dizplay SQLSTATE

A collection of all the SQL statements from the following sections exists at:

\\Db-srv-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML\SQL commands.txt

4.2.1 Retrieving data

In this section we will look at ways to extract data from the XML documents in the XML column.
We will first look at some simple examples that only use the first group of extract functions. Then
we will look at some examples that use the second group of the extract functions. Finally we will
look at some more advanced examples that use the extractCLOBs function to perform more
complicated queries.

Let's start with the following question:
What are the titles of all the books?

16

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

To answer this question we have to extract
the value of the attribute Title of the
element Book.

Since the title is a string value, we will use
the function extractVarchar. Here is a
simple SQL SELECT statement:

SELECT
DB2XML.extractVarchar(xmldoc,'/Book/
@Title") FROM xmicol

Translation l

» Run this SQL statement in the DB2
Command Editor! (You will first need
to connect to the database book. You do
that with the command connect to
book.)

You should see the following result:

& Command Editor 1
Command Editor Selected Edit “iew Toolz Help

I S @@%5@@@{{@

Commands | Query Results | ACCEEE Planl
. T - h, -
L TargetIBBOOK | gdd...lBE'@|°§’@ 3@{
SELECT DEZXML. extractVarchar (xmldoc, ' /Book/@Title') FROM xmlcol
SELECT DEZXIML. extractVarchar (xmldoc, ' /Book/@Title') FROM xmlcol; .:J

SELECT DEZXIL. extractVarchar (xmldoc, ' /Book/@Title') FROM xmlcol

1

Misty Nights
Archeclogy in Eggypt
Database Systems in Practice
Contact

The Fourth Star

Waren wid sjdn
Didliga Data

Music Now and Before
Midsommar i Lund
Encore une fois
European History
Musical Instruments
Oceans on Earth

The Eesach House

Le chateau de mon pere

15 record(s) selected.
KIN

1

Statetment tertnination character I ;

17

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Or (if you haven't configured the DB2 Command Editor according to section 4.2):

& Command Editor 1 - [O] x|
Command Editor Selected Edit Wiews Tools Help

R
%t‘ﬁlfﬁ&@&@@%%ﬁ@{{@ {

Caolnmands Suety Results

Access Plan |

L agdRow |

hlizty Mights Delete Row
IArcheology in Egrypt —

j

[Dstsbaze Systems in Practice
Cortact

The Fourth Star

aren vid sjdn

[Dadliga Data

[Music Mow and Betare
[IMidsommar i Lund
IEncore une fois
IEuerean Histary
[Musical nstruments
Oceans oh Earth

The Beasch House

ILe chateau de mon pere

Commit Roll Back et are Ry s

I Avtamatically comenit updates 15 rowe(=) in memory

If you scroll right you can see that see that the column of the result is quite wide. This is because
the extractVarchar function always returns a 4000-characters long string. To avoid this we can use
the function substr. This function takes a string and returns a sub-string of a specified length. Here
is the same SQL statement as before, but with the substr function:

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Title"),1,30) FROM xmicol

This will create a sub-string 30 characters long starting from the 1% character.

18

Department of Computer DB2 & XML v. 4.0.1

And Systems Sciences 1S4/2i1242/2i4042 spring 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Here is the result:

& Command Editor 1 = =] B3

Command Editor Selected Edt Wiew Tools Help e
‘?o@ﬁ??%@&@@%%@ﬁ@{{@ {

Commands | Cuery Results | Access Plan |
i o T B o 3
b B & TargetlDBOOK | A_dd...l[BQJZ]‘Dflfé‘liy
SELECT substr DEZXML.extractWVarchar ixzmldoc, ' /Book/@Title'), 1,300 FROM xmlcol
-
SBELECT substr (DEZXML.extractVarchar (zmldoc, ' fBook/@Title'),1,20) FROM zmlcol —I

Misty Nights

Archeology in Egypt
Datahase Systems in Practice
Contact

The Fourth Star

Tiren wid sjén

Didliga Data

1 LY

=
PO e ien

Statetnent tertination character I :

You can notice in the result that the returned column doesn't have a name. It

Stockholm
January 2007

is therefore

automatically called "1" since it is the 1% column. We can assign a name for the column by using

the keyword AS. This is how the SQL statement and the result would look then:

SELECT substr(DB2XML.extractVarchar(xmldoc, /Book/@Title"),1,30) AS
FROM xmlcol

& Command Editor 1 m=1E3

Cormand Edtor Selected Edit “iew Tools Help e
LEBPOEERED R P @O ‘

Comtmahds | Gliery Resunsl Access Planl

b%so.ﬁo‘mrgetlﬂaom Ll gdd...l[&“ﬁﬂa‘ﬂé’[%

SELECT substr (DEEZMML. extractWarchar (xmldoc, ' fBook/@Title'),1,30) A8 "The Title" FROM xmlcol

_:3

"The Title"

SELECT substr (DEZXML. extractVarchar (zmldoc, ' /Book/@Title’') 1,30 AS "The Title" FROHN xmlcol;:l
SELECT substr (DEZFML. extractWarchar (xmldoc, ' /Book/@Title'), 1,30} AZ "The Title" FEREOM xzmlcol

The Title

Misty MNights J
Archeology in Egypt

Database Systems in Practice

Contact

The Fourth Star -
K | »

Statement terminstion character I :

-

19

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Finally we may want to order the results alphabetically. We can then add an ORDER BY clause® to
the SQL statement (Observe that the column namea that we define with the keyword AS are not
available in the ORDER BY clause.):

SELECT substr(DB2XML.extractVarchar(xmldoc, /Book/@Title"),1,30) AS "The Title"
FROM xmlcol ORDER BY 1

And now the result is ordered:

& Command Editor 1 =]
Command Editor Selected Edit iew Tools Help
LEBPEE ILIFER B O |
Commands | Guery Resutts | Access Plan |

- N 3 TargetIDElOOI{ LI &dd...l@@ﬁ‘ﬂé’@@
SELECT substr (DEEXMNL. extractVarchar (xmldoc, ' fBoock/BTitle') 1,300 AE "The Title"
FROM zmlcol
ORLER BY 1

[

The Title

Archeclogy in Egypt

Contact

Database Systems in Practice
Dadliga Data

Encore une fois

L

European History
Le chateau de moh pere
Midsommar i Lund

Kl |

Statement termination charscter I :

B

We can look now at something more complicated. The following question for example:

List all the titles and original language for all the novels! Sort the results by language and then by
title!

In this case we will have two columns in our result and we also have one condition. Both our
columns contain string values, so we will have to use the extractVarchar function. We will look at
two ways of representing the condition. We start first with having the condition in the path:

° In order to use a column in the ORDER BY clause, the column has to be 255 character or less (if it is a string).
All other types (real, integer, time, etc) can also be used in the ORDER BY clasuse. The same rule applies to the
use of DISTINCT.

20

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book[@Genre="Novel")//@Title"),1,30)
AS "Title",
substr(DB2XML.extractVarchar(xmldoc,'/Book[@Genre="Novel")//@OriginalLanguage’),1,2
0) AS "Language" FROM xmlcol ORDER BY 2, 1

The result of this SQL statement returns one row for each XML document, even if the condition
was not fulfilled:

& Command Editor 1
Cotnmand Editor Selected Edit “iew Toolz Help

%&*‘@fﬁ&@h@@%%tﬁ@{{@

Cammands

Guery Results | Access Plan |
. Targetl[jE:OOK ll &dd...'lﬁ'l‘a’”ﬁ Of@|d@%

archar (xmldoc, ' fBook [BGenre="Novel"] /A0riginallanaage') 1,20} A2 "Laneuaage" FROM xwmlcol ORDER BY 2, 1

Kl [+

Title Lanags ;I .
r
H

The Beach House English N

SQLO4ezl Poutine "EXTRACTVARCHAR" (specific name "*3E45500Z") has returned a
warning SQLETATE, with diagnostic text "DXHDOOZW Path not found. Null is

returned. ". ES0LETATE=01HXO

Midsommar i Lund Swedish

Taren wid sjén Swedish

- - -
Kl | ’

Statement termination character I :

This is the disadvantage of using conditions in the path. Here we can also see that DB2 returns a
warning when a path was not found. This is just a limitation of DB2. The correct behaviour would
be to use the default value for the missing attribute, which is specified in the DTD. For now we will
just ignore this warning.

We will now look at another way of using a condition. We can use an extract funtion in the
WHERE clause of the SQL statement:

SELECT

substr(DB2XML.extractVarchar(xmldoc, /Book/@Title"),1,30) AS "Title",
substr(DB2XML.extractVarchar(xmldoc,'/Book/@OriginalLanguage’),1,20) AS "Language" FROM
xmicol

WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre") = 'Novel'

ORDERBY 2,1

21

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

This version returns only three rows (one for each XML document that fulfilled the condition):

& Command Editor 1 [_ (O] x|

Cotnmand Editor - Selected Bdit Wiew Toolz Help
LEEPEE @ FleFe @ Q@

Commands

Guery Results | Access Plan |
e oBE & Targetl[jEiOOK :' gdd...|[§§”§l|°§’@‘i§@%

SELECT -
substr (DEEFML . extractVarchar (xmldoc, ' f/Book /@Ticle ') 1,300 A4S "Title",

substr (DEZXML. extractVarchar (xnldoc, ' fBock/E0riginallanguage '), 1,200 AS "Language" FROM xmlcol

WHERE DEZFML.extractWarchar (xmldoc, ' fBoock/@Genre') = 'Movel’

OFDER BY 2, 1

il

Title Languags

The Beach House Engliszsh

SQLO46ZW Routine "EXTRACTVWARCHAR" (specific name "*7005470E") has returned a
warning SQLETATE, with diagmostic text "DXDO0O3TW Path not found. HNull is

returned. ". SQLETATE=01HXO
Midsommar i Lund Swedish
Viren wid =jén grradizh

3 record(s) selected with 1 warning messages printed.

' . o

Statement terminstion character I g

We can of course use aggregate functions to answer questions like this one:
How many books of each genre are there?

We can then use the COUNT function and the GROUP BY clause to solve this. The only problem
is that the column we want to use for grouping doesn't exist from the beginning. We must therefore
break the query into two. First we must create a table with all the genres from all the XML
documents and then work with that table. This is the first part:

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Genre'),1,15) AS Genre FROM
xmlcol

We can now use this part in the FROM clause of a new SELECT statement:
SELECT Genre, COUNT(*) AS "Amount of Books"
FROM (SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Genre'),1,15) AS Genre

FROM xmlcol) AS temptable
GROUP BY Genre

22

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

This will produce the following result:

Commmand Editor - Selected Edit Miew Toolz Help et
LHBRBPE=EEO EeEd B @ !
Cornmans | Guery Results | Acoess Plan |

oRE R Target | [BoOK Rd &dd...lﬁ@|°§‘@|$@{

SELECT Genre, COUMT(*) A5 "Awmount of Books"
FROM (SELECT substr (DEEZXML.extractVarchar (xmldoc, ' Book/@Genre'),1,15) A5 Genre FROM xmlcol) AS temptabhle
CROUP BY GCenre

Educational &

SQLO4cZW Foutine "EXTRACTVARCHAR" (specific name "*70054702") has returned a
warning SQLETATE, with diagnostic text "DXDO03W Path not found. MNull is
returned. ". SQLESTATE=01HEX0

Howel
Srcience Fiction
Thriller

LI I SO S Y]

& recordis) selected with 1l warning messages printed.

~
« | o

Statement terminstion character I;

So far we have only used paths that appeared only once in each XML document. The following
question requires data from paths with multiple values:

Which authors have written thrillers or science fiction?

To solve this we will need to use the extractVarchars function. We will also use the
extractVarchar function for checking the conditions:

SELECT substr(returnedVarchar,1,30) AS Authors

FROM xmlcol, table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t
WHERE DB2XML.extractVarchar(xmldoc, /Book/@Genre’) = 'Thriller'

OR DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Science Fiction'

Since we have to use one of plural extract functions, we also have to use the table function to
capture the result. In the FROM clause we must have first the table xmlcol and then the table
function, otherwise the extractVarchars function in the table function will not know where the
xmldoc comes from. The result of the table function is also given a name (t) with the keyword AS.

23

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

The result of this SQL statement is the following:

& Command Editor 1 =] E3
Command Editor Selected Edit Miew Tools Help i
iy . o) -
Cﬂj‘“l:r'?(%‘@ﬁ'&é@'ﬁﬁ§é§' i ®
Carmmancs | Query Results | access Plan |
il L s b -
arg Alel.... i nl =
B BE L Tamet [Boox v| 2 B H & 6|4 B @

SELECT substrireturnedWarchar,1,30) A8 Authors =
FROM xmlcol, table(DBEZXML. extractVarchars (xmldoc, ' /Book/Author /@Name')) A5 t©
WHERE DEZXML.extractVarchar (xmldoc, ' fBook/BGenre') = 'Thriller'
OF DBEFML. extractWarchar (xmldoc, ' fBook/@Genre') = 'SBcience Fiction'

[
OF DEZXML. extractWarchar (xmldoec, ' /Book/@Genre') = 'Science Fiction'; .:J

SELECT substrireturnedWarchar, 1,300 A8 Authors FROM xmlecol, table (DEEFML. extractVarchars (xmldoc, ' /Book/Aut

ATTHORS

John Craft
Carl Sagan
Leslie Bremner
Jakob Hanson

4 record(s) selected.

? . off

Statement terminstion character I;

We could of course return all the details of the authors instead of just the name, but if we would try
to do this with three table functions, we would risk getting invalid results. The following query for
example would not work:

SELECT substr(tl.returnedVarchar,1,30) AS Author,

returnedinteger as Yeatr,

substr(t3.returnedVarchar,1,15) AS Country

FROM xmlcol,

table(DB2XML.extractVarchars(xmldoc, /Book/Author/@Name")) AS t1,
table(DB2XML.extractintegers(xmldoc,' /Book/Author/@YearOfBirth')) AS t2, X
table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Country’)) AS t3

WHERE DB2XML.extractVarchar(xmldoc,/Book/@Genre’) = 'Thriller'

OR DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = 'Science Fiction'

The reason is that the three table functions would be joined without any condition (like a Cartesian
product), so if a book has 2 authors we would get 8 (2*2*2) combinations of the two names with
the two years of birth and the two countries. Similarly if a book would have five authors there
would be 125 combinations. To avoid this, we have to use the extractCLOBSs function instead!

But first, let's see what the extractCLOBs function does. If we want to extract a part of an XML

document as a smaller XML document we can use the extractCLOBs function. In the example that
follows we extract the Edition elements of all the thrillers as new XML documents:

24

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

SELECT substr(returnedCLOB,1,300) as "Thriller Editions"
FROM xmilcol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Edition")) AS t
WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre’) = "Thriller’

The function substr is only used to make the result smaller, since we know that the new XML
documents are not that big. The path used in the extractCLOBSs function does not have an attribute
at the end. It has instead the element that is to be the root element of the new XML documents:

Commmand Editor - Selected Edit Miew Toolz Help et
%i?%?‘?%@&@@ﬂiﬁ%@@{{@ {

Commands | Guery Results | Access Plan |
B33 Target | [Book Rd &dd...l@ﬂ@a|°§’@|$@%

SELECT substrireturnedCLOE,1,300) as "Thriller Editions" =
FROM xzmleoal,

table (DEZXML. extractCLOEs (xnldoc, ' /Book /Edition')) A t

THERE DEZXML. extractVarchar (xmldoc, ' fBoock/@Genre') = 'Thriller’

[

SELECT substrireturnedCLOB,1,300) as "Thriller Editions" FROM xmlcol, table(DBZXHL_extractCLDBs(xmldoc,'IR:J

Thriller Editions
“Edition Tear="1987" Price="l1z0"=
=Translation Lahgquage="German" Publisher="Eingsly" Price="130"=</Translation>
“Transzlation Lancquage="French" Publisher="Addizon" Price="135"r</Translation>
“Translation Language="Pussian" Publisher="addison" Price="1Z&"==/Translation>
=/Edition=
<Edition Tear="1993" Price="1Z0"=></Edition=

Z record(s) selected.

? . off

Statement terminstion character I;

The way to solve the previous question with the extractCLOBs function instead of the three table
functions (that did not work) would be the following:

First we extract CLOBs for all the Author elements of books that match the condition criteria and
then we can use the simple extract functions to retrieve the wanted data from the new XML
documents (the CLOBS):

SELECT
substr(DB2XML.extractVarchar(DB2XML.XMLCLOB(t.returnedCLOB),'/Author/@Name"),1,30) AS
Author,

DB2XML.extractinteger(DB2XML.XMLCLOB(t.returnedCLOB),'/Author/@YearOfBirth') as Year,
substr(DB2XML.extractVarchar(DB2XML.XMLCLOB(t.returnedCLOB),'/Author/@Country’),1,15)
AS Country

FROM xmicol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author’)) AS t

WHERE DB2XML.extractVarchar(xmldoc,'/Book/@Genre') = "Thriller'

OR DB2XML.extractVarchar(xmldoc, /Book/@Genre') = 'Science Fiction'

25

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

The function XMLCLOB of the schema DB2XML is also used here. This is a casting function that
takes a CLOB value and returns it as an XMLCLOB value. This is required because the extract
functions expect a variable of XML data type (such as XMLCLOB or XMLVARCHAR). This
SQL statement returns all the information on authors that have written thrillers or science fiction:

Command Editor Selected Ecit Wiew Toals Help ol
LEBPOF IO ERREe @@ |
Commands | Query Resutts | Access Plan |

e BE 2 Targetl[jBOOK Ll Add.. | B = B e o f @ a @{

SELECT substr (DEEXMNL. extractWVarchar (DEEXML_MMLCLOE it returnedCLOEB) , ' FAduthor /@Nawe') ,1,30) A8 Author,
DEZXML. extractInteger (DEEZXIL . XMLCLOE (t. returnedCLOB) , ' fAuthor /@Tear0£fBirth') as YTear,
substr (DEEZXML. extractWarchar (DEZXML . XHMLCLOE (t. returnedCLOE) |, ' fAiuthor /@Country ') 1,158} AE Country

|»

FROM xmlcol, table(DEEXML.extractCLOEs (xmldaoc, ' /Bookshuthor')) AS £
WHERE DEEXIL. extractVarchar (zmldoc, ' /Book/@CGenre') = 'Thriller'
OF DEZXML.extractWarchar (xmldoc, ' /Book/@Genre') = 'Science Fiction'
|
SELECT substr (DEEXNL. extractVarchar (DEEXML.MMLCLOE it . returnedCLOB) , ' fAuthor /@Nawe ') , 1,207 AS Author, DEZ
ATTHOR TELR COUNTEY
John Craft 1348 England
Carl Sagan 1312 TEh
Leslie Brenner 1245 TSA
Jakob Hanson 1246 Sweden

4 recordis) selected.
-
4| | 3

Statement termination character I ;

Sometimes it may be necessary to combine in the result, data from different levels of the XML
structure. The following questing asks as to do exactly that:

Make a list of all the educational books and the authors that have written each book! Show the
book title and each author’s name and country! Show only authors that are born after 1950!

To solve this we will need to have conditions on two levels and also retrieve information from two
levels. When solving a problem like this, we always start at the higher level of the XML structure
(the Book element) and move step by step through the sub-elements. The first thing to do is to
check the genre of the books and retrieve the title and the authors (as CLOBs). When we have done
that we can start working with the contents of the author CLOBs. The first part can be done with
the following SELECT statement:

SELECT substr(DB2XML.extractVarchar(xmldoc,'/Book/@Title"),1,30) AS Title,
DB2XML.XMLCLOB(t.returnedCLOB) AS AuthorXML

FROM xmlcol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t
WHERE DB2XML.extractVarchar(xmldoc, /Book/@Genre') = 'Educational’

This will create a table with two columns (the book title and the author CLOB) and one row for

each author of each educational book. We also cast the returned CLOB into an XMLCLOB, so that
we don't have to do it later.

26

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

We can now use this SELECT statement as the source for an outer SELECT statement. This means
that we assign a name to the result of this SELECT statement, which will be considered by the new
SELECT statement as a table with two columns (Title and AuthorXML).

The new SELECT statement will then retrieve the name and country of the authors and control the
year of birth:

SELECT Title,
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Name'),1,20) AS "Author Name",
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,15) AS "Author Country"

FROM (SELECT substr(DB2XML.extractVarchar(xmldoc, /Book/@Title'),1,30) AS Title,
DB2XML.XMLCLOB(t.returnedCLOB) AS AuthorXML
FROM xmicol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author’)) AS t
WHERE DB2XML.extractVarchar(xmldoc, /Book/@Genre’) = 'Educational’) AS temptable

WHERE DB2XML.extractinteger(AuthorXML,'/Author/@YearOfBirth") > 1950
And the result is the following:

& Command Editor 1 HE=E
Command Editor Selected Edit Wiew Tools Help e :

LEBPEE LY FeEe @ Q
Cornrnancis | QLEry Resultsl Access Planl
bR A g [0 soor S m BB 26 b3

SELECT Title,]
substy (DEZXNL. extractWarchar (AuthorXML, ' fAuathor f@Name ') ,1,20) A5 "luthor Name",
substr (DEZXML. extractVarchar (AuthorXIL, ' fAuthor f@Country '), 1,15y AS "Author Country"
FROM (2ELECT substr (DEERML.extractVarchar(xmldoc,'/Bock/@Title'), 1, 20) A Title,
DEZXML . XMLCLOE (. returnedCLOEB) A3 AuthorXML

FEOM xmlcol, table(DEZXML. extractCLOEs (xmldoc, ' /BookAuthor')) A8 ©

THERE DEZXML._extractVarchar (xmldoc, ' /Book/@Genre') = 'Educational') AS temptahle
WHERE DEzXML.extractInteger (AuthorXML, ' fAuthor/@Year0£fBirth') = 1950

I K

TITLE Author Name Author Coumtry
Archeology in Egypt Arnie Bastoft dustria
Archeology in Egypt Meg Gilmand Australia
Datahase Systems in Practice Alan Griff TSa

Datahase Systens in Practice Marty Faust TSa

Database Systems in Practice Celine Biceau Canada

Masic Now and Before Mimi Pappas TEL

Musical Instruments Alicia Bing Eelogium

SQLO45ZT Routine "EXTRACTVARCHAR" (=specific name "*70054702") has returned a
warning SQLSTATE, with diagnostic text "DXHDOOZW Path not found. Null is
returned. ". EQLETATE=01Hx0

Oceans on Earth Linda Ewans QUE=N
S0LO4SET Poutine "EXTRACTVARCHAR" (specific name "*70054702") has returned a
warning SQLSTATE, with diagnostic text "DXHDOOZW FPath not found. Null is

returned. ". SQLETATE=01H<0
Oceans on Earth Chuck Morrisson England
Oceans on Earth Eay Morrisson England
—
10 recordis) selected with £ warning messages printed. -
iI I }l

Statemert termination character I;

Now we are ready to look at really complex examples. The following qualifies as such:

27

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Show a list of all the authors born after 1940, the amount of book editions they have written and the
amount of different languages each author's books have been translated to! Also show the average
price of the book editions for each author! The result shall have the following columns: Author
Name, Author Country, Amount of editions, Amount of translation languages, Average price. The
result shall be sorted by author name!

To solve this we will need to work in many steps. First we need to extract the editions and the
authors:

SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,
DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML

FROM xmilcol, table(DB2XML.extractCLOBs(xmldoc,' /Book/Author’)) AS t1,
table(DB2XML.extractCLOBs(xmldoc,'/Book/Edition’)) AS t2

This will return all valid combinations of authors and editions (55 such).

Next thing we have to do is to extract the name and country of the authors and also get rid of the
authors that were born 1940 or earlier. At the same time we can also extract the edition price:

SELECT substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Name'),1,20) AS Name,
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,20) AS Country,
DB2XML.extractinteger(EditionXML,'/Edition/@Price") AS Price

FROM (SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,
DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmicol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author")) AS t1,

table(DB2XML.extractCLOBs(xmldoc, /Book/Edition’)) AS t2) AS temptablel
WHERE DB2XML.extractinteger(AuthorXML,'/Author/@YearOfBirth") > 1940

We can now use this SQL statement in the FROM clause of the next SELECT statement. Now we
have enough information to count the amount of editions and even calculate the average edition
price:

SELECT Name, Country, COUNT(*) AS "Amount of editions", AVG(Price) "Average edition price"
FROM (SELECT substr(DB2XML.extractVarchar(AuthorXML,/Author/@Name'),1,20) AS Name,
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,20) AS Country,
DB2XML.extractinteger(EditionXML,'/Edition/@Price’) AS Price
FROM (SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,
DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmicol, table(DB2XML.extractCLOBs(xmldoc, /Book/Author')) AS t1,
table(DB2XML.extractCLOBs(xmldoc, /Book/Edition’)) AS t2) AS temptablel
WHERE DB2XML.extractinteger(AuthorXML,'/Author/@YearOfBirth') > 1940) AS temptable2
GROUP BY Name, Country

This statement has now four columns. These are four of the five that we need to have in the final
result.

28

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007

SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

& Command Editor 1 =] B3
Command Editor~ Selected Edit Wiew Tools Help mm
LHEPD=E @0 ERER @O ¢
Commands | Query Resuﬂsl Access Planl

B B3 & Targetl[jBOOK ﬂ gdd...lE;Q:E] #@Lgs@%

SELECT Name, Country, COUNT(*) AS "Awmount of editions", AVG(Price) "Average edition price" &
FROM (SELECT substr(DEZXMNL.extractWVarchar (AuthoriML, ' fhuthor/@Name') 1,20} AE Name,

substr (DEBERML. extractVarchar (AuthorXML, ' Fiuthor /@Counmtry ') 1,200 AE Country,

DEZXML. extractInteger (EditiontML, ' /FEdition/@FPrice') AZ Price

FROM (SELECT DEZFML_XMLCLOB (tl.returnedCLOE) A% AuthorXIML,

DEEXML. ¥MLCLOB (£Z. returnedCLOB) A5 EditionkML

FROM xmlcol, table (DEEXML. extractCLOBs (xmldoc, ' /Book/Author')) A4S £1,
tahle (DEEZXML. extractCLOBs (xmldoc, ' fBook/Edition')) AS £Z) AS temptablel
THEEE DEZXML. extractInteger (AuthorxML, ' fhuthor /@Tear0fEircth') = 1940) A5 temprahleZ
GREOUP BY Nawme, Country

[
[EIIC T2 LDISun=r Mt LMy T To ﬂ
Arnie Bastoft Austria 3 z70
Auna Fonzales Perre FPortugal 1 &50
Celine Biceau Canada z 425
Chris BEyan France 2 z70
Chuck Morrisson England 4 448
Jakobh Hanson Sweden 1 1z0
James Patterson meh 1 1an
John Crafr England 1 1z0
Eay Morris=son England 4 445
Lezlie Brenner TSk 1 210
Linda Evans USh 4 445
Marty Faust TSa z 435
Meg Gilmand Australia 2 z70
Mimi Pappas TEh Z 217
Peter de Jonge sk 1 1z0
Pierre Zargone Eelgium b4 138

19 record(s) selected. -
1| I bI

Statement termination character I;

The last (missing) column is the amount of different languages every author has been translated
into. To get that, we have to start from the beginning again. This is especially important since the
translation element may not appear for all editions. This means that we will have half of the results
in one SQL statement and the other half in another. We will simply need to join the two results at
the end. And in order to guaranty that all the authors are in the result we will have to use an outer
join. Remember that the result above had 19 rows. We should have 19 rows in the final result as
well. But first things first.

In order to retrieve the different languages we start from the xmlcol as we did before, but this time
we can extract directly the author names and the translation languages (all the valid combinations).
Since we are going to join the result of this part with the result from before, we need not care about
the conditions (The invalid authors will automatically get filtered out when we join with the list of
the valid ones that we created before.):

SELECT substr(tl.returnedVarchar,1,20) AS Name,

substr(t2.returnedVarchar,1,20) AS Language

FROM xmilcol, table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t1,
table(DB2XML.extractVarchars(xmldoc,'/Book/Edition/Translation/@Language’)) AS t2

29

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Notice that here it is okay to use two table functions together because we do want all the
combinations of languages and author names!

Now we can use this result to count the different languages every author has been translated into:

SELECT Name, COUNT (DISTINCT Language) AS "Amount of languages”

FROM (SELECT substr(t1.returnedVarchar,1,20) AS Name,
substr(t2.returnedVarchar,1,20) AS Language
FROM xmlcol, table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name")) AS t1,

table(DB2XML.extractVarchars(xmldoc,'/Book/Edition/Translation/@Language')) AS t2) as t
GROUP BY Name

Here we used the DISTINCT keyword in the COUNT function in order to count each language
once. We could just as easily have used DISTINCT in the SELECT clause of the nested statement.

Either way, this returns two columns: the author name and the amount of different languages:

@ Command Editor 1
Command Editor Selected Ecdit “iews Toolz Help

LHEFEE A0 EeE B O Y

Commands

Guery Results | Aecess Plan |
B RE & Targetl[jEiOOK ﬂ ﬁdd...lﬁ@a‘o‘f’%‘&sm#

SELECT Name, COUNT (DISTINCT Language) AS "Awmount of languages" j

FROM (SELECT substri{tl.returnedVarchar,l,20) AZ Name,

substri(tf. returnedVarchar, 1,20y 4% Lancuage

FREOM mlcaol, table (DEZXML. extractVarcharsixmldoc, ' /Eock/buthor /@Name ')) AS £1,

tahle (DEZXML. extractWarchars (xmldoc, ' /Book/Edition/Translation/@Lancquage’)) A8 t£Z) as t©
GROTP ET Mame

L]l

(L]

Arnie Bastoft

-
L]

Auna Gonzales Perre

-
o]

Carl George
Carl Sagan
Chri=s Byan
Christina Ohlsen

-
LT R R)

Chuck Morrisson
Franc Desteille
John Craft

Kay Morrisson

[

Fostas Andrianos
Leslie Brenner

-

Lilian Carrera
Linda Ewvans
Marie Franksson
Meg Gilmand
Mimi Pappas
Peter Feldon

-
Wk MmO RN R o W N

Pierre Zargone
Zam Davis

23 recordis) selected.
-
1|| »

Statement termination character I ;

The author name is the column that this result and the previous result have in common, and it is the
one we need in order to join the two results. Note that this result has 23 rows (more that 19). But
this does not automatically mean that all the 19 tat we want are included in the 23.

30

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Now to join the two parts. We can simply construct a new SELECT statement and place the two
parts as two tables in the FROM clause. Then we simply use as a join condition, checking that the
author names are equal. We start with an inner join in order to prove that this could fail to catch all
the 19 authors:

SELECT partl.Name AS "Author name", Country AS "Author Country",
"Amount of editions", "Average edition price", "Amount of languages”
FROM

(SELECT Name, Country, COUNT(*) AS "Amount of editions",

AVG(Price) "Average edition price"

FROM (SELECT substr(DB2XML.extractVarchar(AuthorXML,/Author/@Name'),1,20) AS Name,
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,20) AS Country,
DB2XML.extractinteger(EditionXML,'/Edition/@Price’) AS Price
FROM (SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,

DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmicol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t1,
table(DB2XML.extractCLOBs(xmldoc, /Book/Edition’)) AS t2) AS temptablel

WHERE DB2XML.extractinteger(AuthorXML,/Author/@YearOfBirth') > 1940) AS temptable2
GROUP BY Name, Country) AS partl,
(SELECT Name, COUNT (DISTINCT Language) AS "Amount of languages"

FROM (SELECT substr(t1.returnedVarchar,1,20) AS Name,
substr(t2.returnedVarchar,1,20) AS Language
FROM xmlcol, table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t1,

table(DB2XML.extractVarchars(xmldoc,'/Book/Edition/Translation/@Language')) AS t2) as t
GROUP BY Name) AS part2
WHERE partl.Name = part2.Name
ORDER BY 1

And the result will look nicely like this:

31

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

& Command Editor 1 (=]

Command Editor Selected Edit Wieww Toolz Help
LEEPEEID0 ERER B Q

Cotntnancs

Guery Results | Access Plan |

= N 2y .
b B & [rercet [soox W w [BERBE6E ¢ 2 B[e @]
SELECT partl.Name AZ "Author name", Country A2 "Author Country", L]
"Amount of editions", "Awverage edition price", "Amount of langmages"

FROM

(SELECT Name, Country,

COUNT (*) A% "Amount of editions",
AVWG(Price) "Awerage edition price"

FRON (SELECT substr (DEZXML. extractVarchar (AuthorxNL, ' fAuthor /@Nawe') 1,200 AS Nawe, LI
m partl_ Name AS "Author name", Country A3 "AZuthor Country", "Amount of editions", "Awerage edition pric-;l
Author name Author Country Awmount of editions Average edition price Awount of langquages
Alicia Bing Belgium z 400 7
Antje Liedderman Germany 1 &E0 1z
Arnie Bastoft Austria 2 z70 £
Auna Gonzales Perre Portugal 1 650 1z
Chris BEyan France 3 z70 1
Clhack Morrisson England 4 445 &
John Craft England 1 1z0 2
FEay Morrisson England 4 445 [
Le=lie Erenner Ush 1 210 1
Linda Ewvans USA 4 445 &
Meg Gilmand Australia 3 z70 E
Mimi Pappas UsSA Z 317 Z
Pierre Eargone Eelgium 2 138 1

13 recordis) selected. AIj
<II 3

Staternent termination character I :

But it only contains 13 rows. That means that 6 of the wanted authors did not have any translations.
So we will simply add the value 0 for their fifth column. We can achieve this with a LEFT

OUTER JOIN and the COALESCE function:

SELECT partl.Name AS "Author name", Country AS "Author Country",

"Amount of editions", "Average edition price",

COALESCE("Amount of languages”, 0) AS "Amount of languages”

FROM

(SELECT Name, Country, COUNT(*) AS "Amount of editions",

AVG(Price) "Average edition price"

FROM (SELECT substr(DB2XML.extractVarchar(AuthorXML,/Author/@Name'),1,20) AS Name,
substr(DB2XML.extractVarchar(AuthorXML,'/Author/@Country'),1,20) AS Country,
DB2XML.extractinteger(EditionXML,'/Edition/@Price’) AS Price
FROM (SELECT DB2XML.XMLCLOB(t1.returnedCLOB) AS AuthorXML,

DB2XML.XMLCLOB(t2.returnedCLOB) AS EditionXML
FROM xmicol, table(DB2XML.extractCLOBs(xmldoc,'/Book/Author')) AS t1,
table(DB2XML.extractCLOBs(xmldoc, /Book/Edition’)) AS t2) AS temptablel

WHERE DB2XML.extractinteger(AuthorXML,'/Author/@YearOfBirth') > 1940) AS temptable2
GROUP BY Name, Country) AS partl LEFT OUTER JOIN
(SELECT Name, COUNT (DISTINCT Language) AS "Amount of languages"

FROM (SELECT substr(t1.returnedVarchar,1,20) AS Name,
substr(t2.returnedVarchar,1,20) AS Language
FROM xmlcol, table(DB2XML.extractVarchars(xmldoc,'/Book/Author/@Name')) AS t1,

table(DB2XML.extractVarchars(xmldoc,'/Book/Edition/Translation/@Language) AS t2) as t
GROUP BY Name) AS part2 ON (partl.Name = part2.Name)
ORDER BY 1

32

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

And we finally have the correct result:

& Command Editor 1
Cotntnand Editar - Selected Edit Yiew Toolz Help

L EPEE EROERRES B0 o

Commancds

Guery Results | Access Plan |
B R Targetl[jEiOOK LI gdd...l@qﬁﬂa‘og’@";#@{

SELECT partl_ Name AZ "Author name", Country A2 "Author Country", ﬂ
"Amount of editions", "Awverage edition price",

COALESCE ("Amcount of languages", 0) A "Amount of languages"

FROM

(BELECT MName, Country, COUNT(*) A5 "Awmount of editions", LI
Author name Author Country Amount of editions Average edition price Amount of lancuages ;I
Alan Griff usa z 435 u]
Alicia Bing Belgium z 400 7
Antje Liedderman Germany 1 G50 1z
Arnie Bastoft Austria a z70)
Auna Gonzales Perre Portugal 1 650 1z
Celine Bicean Canada z 435 u]
Chris Byan France 3 70 E
Chuck Morrisson Erglatnd 4 445 3
Jakob Hanson Sweden 1 1z0 u]
James Patterson JUEFN 1 120 u]
John Crafo Englatnd 1 1z0 3
Fay Morrisson Englatnd 4 445 &
Leslie Brenner JUEFN 1 z1l0 1
Linda Ewvans usa 4 445)
Marty Faust JUEF z 435 u]
Meg Gilmand Australia 3 70 E
Himi Pappas JLEFN z 217 z
Peter de Jonge =i 1 1s0 u}
Pierre Eargone Belgium z 135 1

19 record(s) selected.

" o

Statement termination character I;

For even more explained examples you can take a look an older version of the lab compendium
pages 29-36 (model of XML structure on page 10). This can be found at

\\Db-srv-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML\Comdendium DB2-XML v.2.0
(ht2001).doc

4.2.2 Manipulating data

Retrieving data from the XML documents is not always enough. Sometimes we need to change a
value in an XML document, without having to delete the entire document and insert it after
manually making a change. We may also want to do some methodic change in the entire XML
column, such as change the word "USSR" to "Russia" for any attribute named Country.

33

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

In this section we will look at a couple of examples of doing such changes. We will start with the
following problem:

Change the e-mail of Jakob Hanson to hanson@home.se!

We can do this in two different ways. The first way is to go through every XML document in the
XML column and update the path /Book/Author[@Name="Jakob Hanson")//@Email to
hanson@home.se. This would of course do a lot of extra work, but in a smaller system it may not
matter. The other way would be to first find the XML documents that contain an author name Jakob
Hanson and then change the email in those documents only. Both ways will produce the same
result.

Here is an UPDATE statement for the first variant:

UPDATE xmlcol

SET xmldoc = DB2XML.update(xmldoc,
'/Book/Author[@Name="Jakob Hanson"[/@Email’,
'hanson@home.se")

After running this we get a message that the command was completed successfully, but we may
also want to verify that the e-mail address really got updated. We can simply do that with the
following SQL statement:

SELECT substr(DB2XML.extractVarchar(xclob,'/Author/@Email’),1,20) AS Email
FROM (SELECT DB2XML.XMLCLOB(returnedCLOB) AS xclob

FROM xmlcol,

table(DB2XML.extractCLOBs(xmldoc,'/Book/Author’)) AS t) AS temp
WHERE DB2XML.extractVarchar(xclob,'/Author/@Name') = 'Jakob Hanson'

The other version of the UPDATE statement would look like this:

UPDATE xmlcol
SET xmldoc = DB2XML.update(xmldoc,
'IBook/Author[@Name="Jakob Hanson"[/@Email’,
'hanson@home.se")
WHERE 'Jakob Hanson' IN
(SELECT returnedvarchar
FROM table(DB2XML.extractVarchars(xmldoc, '/Book/Author/@Name')) as t)

This version is much faster, but it may be difficult to detect when the slow version only takes a
second or two. For the exercises in section 4.4 you can use any of the two styles.

34

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

4.3 Queries that produce XML explained
In this section we take a look at the functions used to create XML as the output of an SQL

statement. The examples in this section are based on the horse riding database described in section
3.2.

We can start with a simple example:

Return all the horse names as the content of Horse elements!

First we could just write a standard SQL statement to return the horse names:

SELECT Hname FROM Horse

This would simply return all the names:

& Command Editor 1
Command Editar - Selected Edt “iew Toale Help

EED i%:' CEGQ] 2 B 63 Tﬁ‘] e IE\ @ % % © e %

Camtnands

Guuery Results | Access Plan |

b B & Targetllj RIDING | ada |

select hname from horse

@“sna\of@w@{

Fabulous Guy
Faelicity Ro=e
Fing Blayer

Lady Macknight
Lake William
Hagellan

Not Without Honor
Quiet Patriot

Dan Minister
Scooter Browm
Speed Promise
Spinelessjellyfish

17 recordis) =selected.
-
1|| 4

Statement terminstion character I :

What we want to do is place these names inside XML elements. To do this we can use the
XMLELEMENT function or the XMLFOREST function. DB2 requires that we transform the result
to a data type that can be shown for the user. Since all the XML functions return a result of the
special XML data type, we can use the function XML2CLOB to cast them to CLOB.

SELECT XML2CLOB(XMLELEMENT(NAME "Horse", Hname)) FROM Horse
SELECT XML2CLOB(XMLFOREST(Hname AS "Horse")) FROM Horse

35

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Either statement will return the same result:

B Command Editor 1
Command Editor - Selected Edt Wiew Toolz Help

%@%@ﬁ&%@ﬁ%%ﬁ@@{@

Commands

Guery Results | Access Plan |

L S Targetl[j RIDING v | ada. |

BB o6+ DHBen

SELECT MLEZCLOE (XMLELEMENT (NAME "Horse", Hname)) FROM Horse
SELECT *MLZCLOE (*MLFOREST (Hname AS "Horse")) FROM Horze

SELOECI rIILGECOOD IFIIDFOEL S I IOIaENE Eo - NOL=E 11 I EOI UL ==, d
SELECT XMLEZCLOE (*MLFOREST (Hhame A5 "Horse")) FROM Horse
1

<HorsexFabulous Fay</Horses=
“Horse>Felicity Rose<=/Horse:=
“HorserHing Slayer<;/Horsea>=
“Horse=Lady Macknight</Horse=
“Horse=sLake William=/Hor=sex
“Horse=Magellan-< /Horse=
“HorsesNot Without Honor</Horses
<Horse=Quiet Patriot<;/Horse:=
“Horse>Pan Minister</Horsex
<Horse=Scooter Brown< /Horse=
“Horse=Spesd Promise< /Horses>
“Horse=S8pinelessjellyfish</Horsex

17 recordizs) selected.
-
1|| *

Statement termingtion character I;

The XMLFOREST function can be used to create more than one element, while the
XMLELEMENT only produces one element. For the following we can use the XMLFORSET
function:

Show all the information of each horse as elements!
SELECT XML2CLOB(XMLFOREST(Hname AS Name, Weight, Color, Sex, BirthYear,

OwnerClub As "Club"))
FROM Horse

36

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

Note that the element names use capital letters unless we specify the element name enclosed in
double quotes. Also note that the result has one column.

& Command Editor 1 = E3
Command Editor Selected Edit Yiew Tools Help o]

LERBPEEALDEREE E @ =

Cottnands

Guery Resuﬂsl Access Planl
B E Targetl[leDlNG ﬂ Add. .. 6@#%@‘&@%

SELECT XMLEZCLOE (XMLFOREST (Hnawe AZ Name, Weight, Color, Sex, BirthVear, OwnerClub As "Club" })) FROM Horse

1 —— .
“NAME:Felicity Rose</MNAME:<WEIGHT*476</WEIGHT=<COLOR=brown</COLOR><SEX> fenale</SEX-<BIRTHYEAR=1555</BIRTHYEAR<ClubrRiders Club</Club> _I
“NAME>Ran Minister</NAME-<WEIGHT»446</WEIGHT~<COLOR>gray=/COLOR=<S5EX~nale</SEX><EIRTHYEAR1336</BIRTHYEAR<Club>Riders Club=/Club=

“NMMErSpeed Promise< /NAME-<WEIGHT+466</WELIGHT*<COLOR>black</COLOR><5EX> fenale</SE{><BIRTHYEAR>1334< BIRTHTELR-<Club*Riders Club</Club>

“NAME=>Not. Withour Honor</NAME=<WEIGHT*516</WEIGHT><COLOR>hrowm</COLOR><8EX> fenal o< /EE><BIRTHYEAR> 1393« /BIRTHTEAR-<Club=Riders Club</Club>
“NAME=Magellan< /NAME=<WEICHT=>471</MEIGHT =<COLOR=black=/COLOR=<8EX>nale«/SEX><BIRTHYEAR= 1995« /BIRTHYEAR><Club>Horseriders</Club>

“NAME:Fabulous Guy</NAME=<WEIGHT=47Z</WEIGHT=<COLOR=brown</COLOR><SEX*nale</SEX><BIRTHYEAR- 1998 /BIRTHYEAR<ClubsWild Horse Club</Club>
<NAME»Spinelessjellyfish< /NAME=<WEIGHT>493</WELIGHT><COLOR>white</COLOR><3EX>fenale</SEX~<BEIRTHYEAR>19589</BEIRTHYEAR>=Club~Wild Horse Club=/Club>
“<NAME*King Slaver</HNAME=<WEIGHT>465</MEIGHT><COLOR*browm</COLOR*<SEXrnale</SEX><BIRTHYEAR=1991</BEIRTHYEAR=<Club*Appaloosa Horse Club=/Club>

“NAME>Lake William</MAME><WEIGHT=461</WEIGHT=<COLOR>hromwm</COLOR><8EX*nal e« /SEX><BIRTHYEAR>1993< /BIRTHYELR-<Club*bippaloosa Horse Club</Club>
<NAME>Ecooter Browmn</HAME><WEIGHT>466</WEIGHT ~<COLOR>brown</COLOR><S8EX>nale</SEX~<BIRTHYEAR>199E5 < /BIRTHYEAR-<Club>bppaloosa Horse Club</Club>
“NAME=Quiet Patriot</MAME><WEIGHT*456</WEIGHT=<COLOR=brown</COLOR><8EX*nale</SEX-<BIRTHYEAR=1997</BIRTHYEAR:<ClubsMorgan Horse Club</Clubx

“<NAME=Lady Macknight</NAME><WEIGHT»436</WEIGHT~<COLOR=brown</COL0R><SEX>fenale</SEX~<EIRTHYEAR>1335=</BIRTHTEAR-<Club=Morgan Horse Club</Club>

1Z recordis) selected.

Ly o

Statement termination character I‘

If we try to do a similar thing with the XMLELEMENT function we could have this statement:

SELECT XML2CLOB(XMLELEMENT(NAME Name, Hname)),
XML2CLOB(XMLELEMENT(NAME Weight, Weight)),
XML2CLOB(XMLELEMENT(NAME Color, Color)),
XML2CLOB(XMLELEMENT(NAME BirthYear, BirthYear)),
XML2CLOB(XMLELEMENT(NAME Sex, Sex)),
XML2CLOB(XMLELEMENT(NAME "Club", OwnerClub))
FROM Horse

This would return six columns and each column would be 4000 characters wide. In order to make
the six elements one uninterrupted sequence, we can use the XMLCONCAT function:

SELECT XML2CLOB(XMLCONCAT(XMLELEMENT(NAME Name, Hname),
XMLELEMENT(NAME Weight, Weight),

XMLELEMENT(NAME Color, Color),

XMLELEMENT(NAME BirthYear, BirthYear),

XMLELEMENT(NAME Sex, Sex),

XMLELEMENT(NAME "Club", OwnerClub)))

FROM Horse

This will produce the exact same result as the version using the XMLFOREST function:

37

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

mmand Editor 1

Command Editor Selected Edit ¥iew Tools Help
L e EE B @

Cotmimancs I Query Resuﬂsl Access P\an]

B B2 R | Teroet 3 riowG o o By B su

SELECT XMLZCLOB (MMLCONCAT (XMLELEMENT (NAME Name, Hname), -
XMLELEMENT (NAME Weight, Weight),
FMLELEMENT (MAME Color, Color),
HMLELEMENT (MAME Birth¥ear, Birth¥ear),
XMLELEMENT (NAME Sex, Sex!,

FMLELEMENT (MAME "Club", OwmerClub)))
FROM Horse

i F

]l

<HNAME-Felicity Rose</NAME><WEIGHT=47&</WEIGHT><COLOR-brown</COLOR=<EIRTHYEAR-1995</EIRTHYEAR-<3EX~fenale</3EX><Club~Riders Club</Club=
<NAME>Ran Minister</HNAME><WEIGHT>446</WEIGHT><COLOR>gray</C0LOR><EIRTHVEAR>1236</EIRTHYEAR><5EX>nal a= /SEX><Club>Riders Club</Club>
<NAME>Speed Promise</NAME:<WEIGHT*466+/WEIGHT*<COLOR:klack</COLOR><BIRTHVEAR> 1994 </BIRTHYEAR- <5EX= fenale</SEX><Club*Riders Club</Clubs
<HNAME-Not Without Honor</NAME==WEIGHT=51&</WEIGHT=<COLOR=brown</COLOR><EIRTHYEAR-1593</BEIRTHYEAR><3EX> fenale</3E=><Club>Riders Club</Club>
=NAME=Magellan< /NAME-<WEICHT>471=/WEIGHT><COLOR~black=/COLOR><EIRTHYEAR>1335</BIRTHYEAR><EEXnale«/SEX><Club~Horseriders</Club>
<NAME>Fabulous Guy</NAME=<UEIGHT*47Z</WEIGHT*<COLORshrotm=/COLOR: <BIRTHYEAR> 1998+ /BIRTHYEAR: <SEXrmale</SEx-<ClubsWild Horse Club</Clubs
<HNAME-Spinelessjellyfish</NAME><WEIGHT»433</WEIGHT><COLOR>white</COLOR><EIRTHYEAR-1989< /EIRTHYEAR=<3EX> fenale</SEX><Club>Tild Horse Club</Club>
“NAME-King &£laver</NAME»><WEIGHT=4&5</WEICHT><COLOR>brown</COLOR><BEIRTHYEAR=1231</BIRTHYEAR=<EExX>nale=/SE><Club>Appaloosa Horse Club</Club>
<NAME> Lake William</NAME=<UEIGHT*461</WEIGHT*<COLOR-browm=/COLOR> <BIRTHYEAR> 1993+ /BIRTHYEAR: <SEXrnale</SEX-<ClubrAppaloosa Horse Club</Clubs
<NAME>Zcooter Brown</NAME><WEIGHT=4&£6</WEIGHT><COLOR-brown</COLOR=<BIRTHYEAR-1935</BIRTHYEAR-<2EX>nale</SE{-<Club-ippaloosa Horse Club</Clubs=
«NAME>Quier Pacriot=/NAME><WEIGHT>4E6</UEIGHT><COLOR=brovm</COLOR=<BIRTHYEAR>1957</BIRTHYEAL-<8Ex>nale</SEX><Club>Morgan Horse Club</Club>
<NAME> Lady Macknight</NAME><UEIGHT>436+/WEIGHT><COLOR>br own</COLOR> <BIRTHYEAR> 1995+< /BIRTHYEAR: <SEX> female</SEX-<Club>Morgan Horse Club</Clubs

12 record(s) selected. v
K1l 3

Statement terminstion character ’_

But this may not be exactly what we wanted after all (Because the result is not a well-formed XML
document.). We probably would like all these elements to be inside a Horse element. To do this we
can create an element and place the XMLCONCAT or the XMLFOREST inside it:

SELECT XML2CLOB(XMLELEMENT(NAME Horse, XMLCONCAT(XMLELEMENT(NAME
Name, Hname), XMLELEMENT(NAME Weight, Weight),

XMLELEMENT(NAME Color, Color), XMLELEMENT(NAME BirthYear, BirthYear),
XMLELEMENT(NAME Sex, Sex), XMLELEMENT(NAME "Club", OwnerClub))))

FROM Horse

And we have a much better result:

Command Edior Selecled Edit View Tools Help
LB G0
Comimands | Query Resutts I Access Plan }

B R | et [Rone x| s B By @

SELECT XMLZCLOE (XMLELEMENT (NAME Horse, XMLCONCAT (XMLELEMENT (NAME Naue, Huame),
HKMLELEMENT (HAME Weight, Weight),

KMLELEMENT (HAME Color, Colord,

WRMLELEMENT (NAME EirthYear, BirthYear),

WKMLELEMENT [NAME Sex, Sex),

KMLELEMENT (NAME “Club", OwnerClub)}l}

FLOM Horse

FEORSE-<NAME-Felicity Pose< /NAME-<WEICHT=476</WEICHT><COLOR>brown</COLOR-<BIRTHTEAR>1336</BIRTHYEAR > <SEX> fenale</SEX><Club>Riders Club</Club=</HORSE>
HHORSE=<NAME=Ran Minister</NAME=<WEIGHT>446</WEIGHT><COLOR* gray</COLOR> <BIRTHYEAR>1996< /BIRTHYEAR> <5EXsmal e</SEXs<Club*Riders Club</Club:</HORSE:
HHORSE=<NAME=Speed Promise</NAME><WEIGHT=466+/WEIGHT*<COLOR*black+</COLOR><BIRTHYEAR>1994</BIRTHYEAR: <SEX female</SEX+<ClubrRiders Club</Clubs</HORSE:
HHORSE=<NAME=Not Without Honor</NAME:<UEIGHT*516</UEIGHT=<COLOR*hrowm</COLOR><BIRTHYEAR>1993</BIRTHYEAR:<SEX> female</SEXs<ClubsRiders Club</Clubs</HORSE:
HHORSE=<NAME=Magellan</NAME= <HEIGHT*471+ /WEIGHT><COLOR*black+</COLOR> <BIRTHYEAR>1995< /BIRTHYEAR> <SEXrmal e</SEXs<ClubsHorseriders</Clubs < /HORSEx
FEORSE=<NAME=Fabulous Cuy</NAME-<WEICHT>47Z</WEICHT>=COLOR>brown=/COLOR=<BIRTHYEAR>19928</BIRTHYEAR><EEX nale=/SEX>=Club>Wild Horse Club</Club=></HOLSE>
FEORSE=<NAME=Spinelessjellyfish</NAME=-<WEICHT>433</WEIGHT>=COLOR>white=/COLOR><EIRTHYEAR>192853</BIRTHYEAR><EEX> fenal e« /EEX><Club>Wild Horse Club</Club></]
FEORSE=-<NAME-FKing Elayer</NAME»<WEICHT>4€5</WEICHT><COLOR>browmn</COLOR><EIRTHYEAR=1251</BIRTHYEAR><EEx>nal e</EEX><Club=Appaloosa Horse Club-=/Club>=/HORE!
FEORSE=<NAME=Lake Williaw</NAME=-<WEICHT=>4&l</WEIGHT>=COLOR>brown=/COLOR=<BIRTHEYEAR>1933</BIRTHYEAR><EEX nale=/SEX>=Club>Appaloosa Horse Club</Club></HOR
FEORSE=<NAME=Scooter Brown< /NAME><WEICHT=4€6-</WEICHT><COLOR=br o< /COLOR><BIRTHYEAR> 1336 /EIRTHYEAR><SEXrunale< fSEX><Club>Appaloosa Horse Club</Club=</HO!
FEORSE-<NAME-Quiet Patriot= /NAME><WEICHT=456</WEICHT><COLOR>brown</COLOR><BIRTHTEAR>1337</BIRTHYEAR><SEXruale< /SER><Club>Morgan Horse Club</Club></HORSE:
FEORZE=<NAME-Lady Macknight < /HAME><UEIGHET>426< /WEIGCHT><COLOR>brown</COLOR><BIRTHYEAR=1995< /BEIRTHYEAR><SEX> fenale< /SEX><Club>Morgan Horse Club</Club=</HO!

12 recordis] selected.

Statement termination character

38

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

The same result could be achieved with the following version:

SELECT XML2CLOB(XMLELEMENT(NAME Horse, XMLFOREST(Hname AS Name,
Weight, Color, Sex, BirthYear, OwnerClub As "Club™)))
FROM Horse

& Command Editor 1
Command Ecitor Selected Edit View Tools Help ciaen

LHEPEE IR0 AeER B @ |
Corntands | Query Resuhsl Access Planl

< R Targatl[jmome LI Add.. = @E‘D{’ @ | @%

SELECT *MLZCLOB (XMLELEMENT (NAME Horse, XMLFOREST (Hname A4S Name, Weight, Color, Sex, BirthYear, OwnerClub As "Club"]}
FROM Horse

[L]

1

<HORZE>~NAME=Felicity Rose</NAME=<WEICHT=47&6</WEICHT><COLOR>browm=/COLOR><2E¥>fenale</SEX><BIRTHYEAR>159E< /BEIRTHYEAR>«Club>Riders Club</Club=></HORSE>
<HORZE=><NAME=>Ran Minister</NAME><WEICHT=446< /WEICHT><COLOR>gray</COLOR=<2E>nale</SE><BIRTHYEAR>1996</BIRTHYEAR><Club>Riders Club</Club></HORSE>
<HORSE><NAME>Speed Promise< /NAME-=WEIGHT>4A6< /MEIGHT»<COLOR>hlark</COLOR-<SEX> female</SE-<BIRTHTEAR> 1934 /BIRTHYEAR><Clubh>Riders Club</Club=</HORSE>
<HORSE><NAME>Not Without Honor=/NAME=<WEIGHT=516</WEIGHT=<COLOR-brown</COLOR-<S3ER> fenale</SEX-<BIRTHYEAR-1933</EIRTHYEAR><Club>Riders Club</Club=</HORSE:
<HORSE=<NAME=Magellan</HAME=<WEIGHT =471 </WEIGHT=<COLOR*black=/COLOR=<SEX nale«/SEX><BIRTHYEAR> 1995</BIRTHYEAR= <Club>Horseriders</Club></HORSE>
<HORZE>~NAME=Fabulous Cuy</NAME><WEICHT=47Z</WEICHT><COLOR>browm=/COLOR><2E{>nale=/SE{><BIRTHYEAR>1928= /BIRTHYEAL>=Club>Tild Horse Club</Club></HORSE=
<HORSE=<NAME=Spinelessjellyfish< /NAME=<TMEIGHT»433 < /MEIGHT><COLOR=white</COLOR-<SEX> femal e« fSEX-<BIRTHYELR>1989</BIRTHTYEAR><Club>Wild Horse Club</Club=</]1
<HORSE==NAME=King Zlayer</NAME=<WEIGHT=465</WEIGHT=<COLOR-brown</COLOR==<3E{rnale</3EX-<BIRTHYEAR-1231</BIRTHYEAR=<Club=Aappaloosa Horse Club=</Club-</HORZ
<HORSE=<«NAME=Lake William</NAME><WEIGHT=46l</WEIGHT><COLOR>browm</COLOR><3EXrnale</SE>«BIRTHYEAR> 1993« /BIRTHYEAR> <Club=Appaloosa Horse Club</Club></HOR:
<HORZE=>=NAME=Zcooter Browm< /NAME=<WEICHT=466</WEICHT><COLOR>browm=</COLOR>=2EX>nale< /SEX~=EIRTHYEAR=>193E</BIRTHYEAR><Club>Appaloosa Horse Club</Club></HO.
<HOREE><NAME=(Quiet Patriot-< /NAME>=WEICHT>45e< /WEICHT><COLOR by owmn-< /COLOR><SEX male< SEX=<BEIRTHYEAR=1907< /BIRTHYEAR>=Club>Morgary Horse Club</Club>< /HODEE’
<HORSE==NAME>Lady Macknight</NAME><WEIGHT>436</WEIGHT~<COLOR=brown</COLOR><3EX>fenale</SEX><BEIRTHYEAR~1235< /BIRTHYEAR><Club>Morgan Horse Club<sClub=<sHO

12 recordis) selected.
=
4 I *

Statement termination character |

Another thing we may want to do is put some data as attributes. We could modify the previous
statement so that the horse name and weight can be attributes in the Horse element, instead of sub
elements. To do this we will use the XMLATTRIBUTES function (which can only be used as a
parameter to the XMLELEMENT function before any sub elements):

SELECT XML2CLOB(XMLELEMENT(NAME Horse,
XMLATTRIBUTES(Hname AS "Name", Weight),
XMLFOREST(Color, Sex, BirthYear, OwnerClub As "Club™)))

FROM Horse

39

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

And the result looks like this:

& Command Editor 1 [_[O]=]
Command Ecitor Selected Edit View Tools Help b |

LHEPEE IR0 AeER B @ 'q

Commands

Gty Resuhsl Acoess Planl

L T Targatl[j RIDING LI Aol

SELECT *MLZCLOB (XMLELEMENT (NAME Horse,
FMLATTRIEUTES (Hnawe A% "Name", Weight),
HMLFOREST(Color, Sex, BirthVear, OwmerClub As "Club" i)
FROM Horse

BCRom4 DB @8

|»

L]le |

1

~HORSE Nawe="Felicity PRose" WEIGHT="47&"»<COLORrbrown</COLOR=<3EX>fenale</SEX-<BIRTHYEAR=1935</BIRTHYEAR-=Club>Piders Club</Club=</HORSE>

<HORSE Name="Ran Minister" WEIGHT="446":=<COLORsgray</COLOR><5EX-nale</SEX><BIRTHYEAR- 1296+« /BIRTHYEAR: <Club=Riders Club</Club></HORSE=

<HORZEE Name="Speed Promise" WEIGHT="4&&"=><COLOR=black</COLOR=«ZEX>fenale</SEX~<BIRTHYEAR=1994</BIRTHYEAR==Club>Riders Club</Club></HOREE>

<HORSE Name="Not Without Honor" WEIGHT="Elg"=><COLOR*hrowm</COLOR=<SEX> female</SE><BIRTHYEAR>1993</BIRTHYELR><Cluh>Riders Club=/Club=></HORSE>
<HORSE Name="Magellan" WEIGHT="471"><COLOR*black<sCOLOR><SEX=male</SEX~<BIRTHYEAR>1335«</BIRTHYEAR>=ClubrHorseriders</Club»</HORSE>

<HORSE Name="Fabulous Guy" WEIGHT="47Z"=<COLOR=brown</COLOR><5EX*male</SEX><BIRTHYEAR=1298</BIRTHYEAR=<Club>Wild Horse Club</Club=</HORSE=
<HOREE Name="Spinelessjellyfish" WEIGHT="423"><COLOR>vwhite</COLOR><SEX=female</SEX><BIRTHYEAR>1989</BIRTHYEAR><Club>=Wild Horse Club</Club=</HORZE=
<HOREE Name="Hing Slayer" WEICHT="46L5"><COLOR>brown</COLOR><SEXrmale</SEX><BIRTHYEAR=1901«/BIRTHYEAR><Club=>Appaloosa Horse Club</Club>< /HORSE>
<HORSE Name="Lake William" WEIGHT="461"=><COLOR~brown</COLOR><SEXrmale</SEX><BIRTHYEAR-1333</BIRTHYEAR=<Club>Appaloosa Horse Club</Club></HORSE~
<HORZE Name="3Zcooter Browm" WEIGHT="466"=<COLOR-brown</COLOR=<3EXrmale</3EH{><BIRTHYEAR-1335=</BIRTHYEAR><Club=Appaloosa Horse Club=/Club-</HORZE>
<HORZE Name="Quiet Patriot" WEIGHT="4L5&"=<COLOR>brown</COLOR=<2EX male</S8EN><BIRTHYEAR>-1997=/BIRTHYEAR><Club>Morgan Horse Club=/Club=</HORSE=
<HOREE Name="Lady Macknight" WEIGHT="42&"><COLON*brown</COLOR=<SEX> fenale< /SEX><BIRTHYEAR> 19958« /BIDTHYELD><Club>-Morgan Horse Club=/Clubs< /HOLSE=

1z recordis) selected. VI
4 I *

Statement termination character |

The next kind of thing we may want to do is aggregate information in many levels. Here is an
example:

Create a Club element for each club and a sub element Horse for each horse owned by that club.
Just show the name of the club and the name of the horse!

There are several ways to solve this, but, either way, the XMLAGG function will come in handy.
Producing the Club element with an attribute Name would be similar to what we did before. The
difference here is that there are many horses for each club. We can therefore combine a GROUP
BY clause with an XMLAGG function:

SELECT XML2CLOB(XMLELEMENT(NAME "Club", XMLATTRIBUTES(OwnerClub AS
"Name"), XMLAGG(XMLELEMENT(NAME "Horse", HName))))

FROM Horse

GROUP BY OwnerClub

The result would look like this:

40

Department of Computer DB2 & XML v. 4.0.1 Stockholm
And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

& Command Editor 1
Cotmand Editor Selected Edit View Toolz Help

%@%@a&@@aﬁ@ﬁm@{@

Commands

Query Results | Access Plan |
BB E Targetll‘f]RlDlNG Ll gdd...l@@a‘%"@ J@%

SELECT XMLECLOE(XMLELEMENT (NAME "Club", XMLATTEIEUTES (OtmerClub A4S "Name"), XXMLAGE (XMLELEMENT (NAME "Horse", HName)))) j

FROM Horse
GROUP BY OwmerClub

=l

SELECT >MLZCLOE (XMLELEMENT (MAME "Club", XMLATTRIEUTES (OvmerClub AZ "Nawme"), HMLAGG(MLELEMENT (NAME "Horse", HName)))) FROM Hors;l

1

<Club Name="Appaloosa Horse Club"><HorszerHing Slayer</Horses<HorserLake Williaw</Horses+HorserScooter Erowm</Horses</Club>
<Club Mame="Horszeriders"><HorserMagellan< /Horses><,/Club>

<Club Name="Morgan Horse Club"s<HorserLady Macknight</Horser<HorserQuiet Patriot</Horser</Club>

<Club Mame="Ridersz Clubk"=><HorserFelicity Rose</Horser<Horse>Not Without Honor</Horse><HorszerBan Minister</Horszer=Horses>Speed Pr
<Club Name="Wild Horse Club"=<HorsesFabulous Guy</Horser<HorserSpinelessjellyfish</Horser<,/Club*

£ recerdis) selected.
-
iII »

Statement termination character I;

We could also use the XMLAGG function to aggregate all the rows of the result into one root
element:

SELECT XML2CLOB(XMLAGG(newcol))
FROM (SELECT XMLELEMENT(NAME "Club",
XMLATTRIBUTES(OwnerClub AS "Name"),
XMLAGG(XMLELEMENT(NAME "Horse", HName))) AS newcol
FROM Horse
GROUP BY OwnerClub) AS innertable

The result is now a sequence of Club elements:

& Command Editor 1 ..
Cormmand Editor Selected Edit “iew Toolz Help e
LEBPOS IE0ERES @ @ %
Commands | Query Resunsl Access Planl

L

Targetl[j RIDING v| Add... |

SELECT *MLZCLOEB (XMLAGG (newcaol))
FROM (SELECT XMLELEMENT (NAME "Club",
FMLATTRIBUTES (OvmerClub AS "Name") ,
FMLAGE (XMLELEMENT (NAME "Horse", HMame))) AZ newcol
FROM Horse
GROUP BY OwmnerClub) AS innertable

BCREM+h B[]

ELECT ANLZCLUE (ANLAGG (newooll] FREUM (SELECT AOLELEMENT (NARE "CLuab-, ANLATTRIEUTES (UwnerClub A% "Heme' |, AOLAGE (ANLELEMENT (HETE F!_"jorse ”

1

<Club MName="Appaloosa Horse Club"r<HorserHing Slayer</Horser<HorserLake Williawm-</Horser<HorserScooter Browm</Horser</Club»<Club Name="H

1 recordis) selected.

ay o

Statement termination character I ;

41

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

We can of course place them inside a root element Clubs:

SELECT XML2CLOB(XMLELEMENT(NAME "Clubs", XMLAGG(newcoal)))
FROM (SELECT XMLELEMENT(NAME "Club",
XMLATTRIBUTES(OwnerClub AS "Name"),
XMLAGG(XMLELEMENT(NAME "Horse", HName))) AS newcol
FROM Horse
GROUP BY OwnerClub) AS innertable

We can of course combine any SQL structure we want with the XML functions. We could for
example add an attribute to the element Club that indicates how many horses the club has and one
for how many riders the club has:

SELECT XML2CLOB(XMLELEMENT(NAME "Clubs", XMLAGG(newcol)))
FROM (SELECT XMLELEMENT(NAME "Club",
XMLATTRIBUTES(OwnerClub AS "Name",
COUNT(HName) AS "AmountOfHorses",
(SELECT COUNT(*) FROM Rider
WHERE MemberClub = OwnerClub) AS "AmountOfRiders"),
XMLAGG(XMLELEMENT(NAME "Horse", HName))) AS newcol
FROM Horse
GROUP BY OwnerClub) AS innertable

The resulting XML would look like this:

<Clubs>

<Club Name="Appaloosa Horse Club" AmountOfHorses="3" AmountOfRiders="2">
<Horse>King Slayer</Horse>
<Horse>Lake William</Horse>
<Horse>Scooter Brown</Horse>

</Club>

<Club Name="Horseriders" AmountOfHorses="1" AmountOfRiders="4">
<Horse>Magellan</Horse>

</Club>

<Club Name="Morgan Horse Club" AmountOfHorses="2" AmountOfRiders="3">
<Horse>Lady Macknight</Horse>
<Horse>Quiet Patriot</Horse>

</Club>

<Club Name="Riders Club" AmountOfHorses="4" AmountOfRiders="4">
<Horse>Felicity Rose</Horse>
<Horse>Not Without Honor</Horse>
<Horse>Ran Minister</Horse>
<Horse>Speed Promise</Horse>

</Club>

<Club Name="Wild Horse Club" AmountOfHorses="2" AmountOfRiders="3">
<Horse>Fabulous Guy</Horse>
<Horse>Spinelessjellyfish</Horse>

</Club>

</Clubs>

42

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Finally we can look at an example that makes use of the functions of this section together with the
extract functions from section 4.1.2. (You will need to connect to the Book database for this one.)

Create an XML element Authors with one element for each Author with the author's name as an
attribute and the amount of books as another attribute!

We can do this with the following statement:

SELECT XML2CLOB(XMLELEMENT(NAME "Authors",
XMLAGG(XMLELEMENT(NAME "Author”,
XMLATTRIBUTES(atable.returnedVarchar AS "Name",
(SELECT COUNT(*)
FROM xmlcol
WHERE atable.returnedVarchar IN (SELECT returnedvarchar
FROM table(db2xml.extractVarchars(xmldoc, '/Book/Author/@Name')) AS temp)
) AS "AmountOfBooks")))))
FROM xmilcol, table(db2xml.extractVarchars(xmldoc, '/Book/Author/@Name')) AS atable

And the result would be one XML element Authors, shown here indented:

<Authors>
<Author AmountOfBooks="1" Name="John Craft"/>
<Author AmountOfBooks="1" Name="Arnie Bastoft"/>
<Author AmountOfBooks="1" Name="Meg Gilmand"/>
<Author AmountOfBooks="1" Name="Chris Ryan"/>
<Author AmountOfBooks="1" Name="Alan Griff"/>
<Author AmountOfBooks="1" Name="Marty Faust"/>
<Author AmountOfBooks="1" Name="Celine Biceau"/>
<Author AmountOfBooks="1" Name="Carl Sagan"/>
<Author AmountOfBooks="1" Name="Leslie Brenner"/>
<Author AmountOfBooks="2" Name="Marie Franksson"/>
<Author AmountOfBooks="1" Name="Jakob Hanson"/>
<Author AmountOfBooks="2" Name="Sam Davis"/>
<Author AmountOfBooks="1" Name="Mimi Pappas"/>
<Author AmountOfBooks="2" Name="Marie Franksson"/>
<Author AmountOfBooks="1" Name="Franc Desteille"/>
<Author AmountOfBooks="1" Name="Carl George"/>
<Author AmountOfBooks="1" Name="Peter Feldon"/>
<Author AmountOfBooks="1" Name="Lilian Carrera"/>
<Author AmountOfBooks="1" Name="Auna Gonzales Perre"/>
<Author AmountOfBooks="1" Name="Kostas Andrianos"/>
<Author AmountOfBooks="1" Name="Andreas Shultz"/>
<Author AmountOfBooks="1" Name="Antje Liedderman"/>
<Author AmountOfBooks="1" Name="Christina Ohlsen"/>
<Author AmountOfBooks="2" Name="Sam Davis"/>
<Author AmountOfBooks="1" Name="Alicia Bing"/>
<Author AmountOfBooks="1" Name="Pierre Zargone"/>
<Author AmountOfBooks="1" Name="Linda Evans"/>
<Author AmountOfBooks="1" Name="Chuck Morrisson"/>
<Author AmountOfBooks="1" Name="Kay Morrisson"/>
<Author AmountOfBooks="1" Name="James Patterson"/>
<Author AmountOfBooks="1" Name="Peter de Jonge"/>

</Authors>

43

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

4.4 Assignments

Solve the following questions:

1. Make a list of all the publishers! (No duplicates)

2. How many educational books have been written originally in English?

3. How many translations are there for each book that was originally in English? Even books with

no translations should be in the result.

Which books where written by more than two authors? (Show the book titles!)

5. Make a list of all non-Swedish authors with their e-mail addresses and year of birth! (No
duplicates)

6. Change the year of birth of the Australian author of the book "Archeology in Egypt" to 1966!

7. Create a Rider element for each rider of the club Horseriders. The Rider element shall have a
Name attribute, a Weight attribute and an attribute with the amount of races this rider has
finished. The result should be one Riders element with all the Rider elements inside it.

8. Create a Languages element with Language sub elements. Each Language element shall
have a Value attribute (with the actual language). Create one Language element for each
language that appears as the original language of any book. Each Language element shall have
one or more Book sub elements, based on the books' original language, with the book title as its
content.

e

5 Voluntary Exercises

In this chapter we will look at DB2's facilities for transforming relational data into XML
documents. Even though this part is not a requirement for the course it can be interesting to know
have to create XML documents from data stored in relational tables.

In this chapter we will go through the following:

» Create a database (relational database).

» Enable the database for XML (as an XML collection) and compose XML documents from the
data in the XML collection (the database).

» Extract XML documents into XML files.

» Store XML documents in an XML column (which is similar to what we did with the script in
section 3.1).

All the files required in this chapter, as well as a text file with all the commands, are available at:
\\Db-srv-1\StudentCourseMaterial\IS4 spring 2007\DB2-XML\Files for Voluntary Exercises

5.1 Create the database

The database can easily be created and populated by running the two scripts (see section 3.2). You
have probably already done this in order to complete the exercises in chapter 4.

44

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

5.2 Enable the database for XML (as an XML collection) and compose
XML documents

When the database has been created, it is just an ordinary relational database. If the database is
going to be used as an XML collection then it has to be enabled for XML. That is done as follows:
e Start a DB2 Command Window (Start > Programs > Databases > IBM-DB2 > Command Line
Tools > Command Window)
e Execute this command in the Command Window:
dxxadm enable_db riding

e DB2 CLP

sxmltemprdxxadm enable_db riding

Connecting to databasze "RIDIMNG'.

Enabhling datahase "RIDING". Please wait.
The database "“RIDING' was enabled successfully.

sxmltempr

L4 | v

When that is done there should be a few more tables in the database. Those tables are used by the
XML extender. For example the table DTD_REF contains information about DTD files.

The next step is to enable the XML collection. That is not a necessary step. To enable the XML
collection we need to have a DAD file. The DAD file is specified when enabling an XML
collection. The DAD file can contain information on how to compose XML documents from the
XML collection and how to decompose XML documents into the XML collection. If the XML
collection is not enabled, then the DAD file must be specified every time an XML document is to
be composed or decomposed.

In this exercise we will just specify rules for composition of XML documents in the DAD file and
we will enable the XML collection.

First we need to create a DAD file. To do that we need to know how we want the XML document

to be structured and where all the XML data are stored in the database. In other words we need to
define the XML document structure and map it to the XML collection tables and columns.

45

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Here is the structure for the XML documents that we want to compose:

@

A
Contestant |

S>> SO B

Figure 5 Structure of elements and attributes for the XML documents

The Race element will be the root element of the XML documents. The Race element consists of
two attributes (Date, Distance) and one element (Contestant). The Contestant element can
appear several times within a Race element. Each Contestant element has three attributes
(Clubname, Time, Status) and two elements (Rider, Horse), which in turn have two and three
attributes respectively.

An XML document with that structure would look like this:

<?xml version="1.0" standalone="yes"?>
<IDOCTYPE Race SYSTEM "">
<Race Date="2001-06-05" Distance="1000">
<Contestant Clubname="Appaloosa Horse Club" Status="finished" Time="00:02:02">
<Rider Name="Bill Spawr" Weight="48"></Rider>
<Horse Name="Lake William" Weight="461" Birthyear="1993"></Horse>
</Contestant>
<Contestant Clubname="Horseriders" Status="finished" Time="00:02:02">
<Rider Name="Warren Stute" Weight="55"></Rider>
<Horse Name="Magellan" Weight="471" Birthyear="1995"></Horse>
</Contestant>
<Contestant Clubname="Wild Horse Club" Status="walkover">
<Rider Name="Simon Bray" Weight="53"></Rider>
<Horse Name="Spinelessjellyfish" Weight="493" Birthyear="1989"></Horse>
</Contestant>
</Race>

46

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Creating a DAD file, with the mapping for the transformation from XML data stored in the XML
collection into XML documents, is a little more complicated. In the DAD file that we will create,
we will use SQL mapping. SQL mapping works as follows:

“SQL mapping allows simple and direct mapping from relational data to XML documents through
a single SQL statement... SQL mapping is used for composition; it is not used for
decomposition...The SQL_stmt maps the columns in the SELECT clause to XML elements or
attributes that are used in the XML document. When defined for composing XML documents, the
column names in the SQL statement’s SELECT clause are used to define the value of an
attribute_node or a content of text_node. The FROM clause defines the tables containing the data;
the WHERE clause specifies the join and search condition.” (XML Extender

Administration and Programming).

In addition to that, the SQL statement must contain an ORDER BY clause, where the columns that
identify the rows uniquely must be listed. The column names listed in the SELECT clause must be
unique, if two columns have the same name then one of them must be renamed using the AS
statement (example: SELECT address, address AS address2 ...).

Before we start with the structure we defined above, let’s look at a simpler case!

Here is a simple example of a valid SQL statement:

SELECT cname, address FROM club ORDER BY cname

Cname is the primary key of the club table, therefore it appears in the ORDER BY clause.

It is then possible to place the values of the columns into elements or attributes of the XML
document. Here is how it’s done:

To get an element Club we define (in the DAD file) the following tag:

In the DAD file: Will produce in the XML document:
<element_node name="Club"> <Club>
</element_node> </Club>

To get an attribute address in the Club element:

In the DAD file: Will produce in the XML document:
<element_node name="Club"> <Club address="">
<attribute_node name="address"> </Club>

</attribute_node>
</element_node>

47

Department of Computer
And Systems Sciences
SU/KTH

nikos dimitrakas

DB2 & XML v. 4.0.1
1S4/2i1242/2i4042 spring 2007
Models and languages for object,
relational and web databases

Stockholm

To add a value to the address attribute from the SQL statement:

In the DAD file:

<element_node name="Club">
<attribute_node name="address">
<column name="address"/>
</attribute_node>
</element_node>

To add a value to the Club element from the SQL statement:

In the DAD file:

<element_node name="Club">
<attribute_node name="address">
<column name="address"/>
</attribute_node>
<text_node>
<column name="cname"/>
</text_node>
</element_node>

So if we put all this (and a little more) together, we should have a DAD file:

First we start with two XML lines. DAD files
are also XML files, that follow the rules
specified in a DTD file (dad.dtd).

The DAD element is the root element of any
DAD file.

Validation is applicable only when the DAD
file is used for decomposition, therefore we
set it to NO.

The Xcollection element is where all our
code is placed.

The SQL statement is placed within an
element called SQL_stmt

These lines make sure that the resulting XML
document contains standard XML lines. The
DOCTYPE has to always match the root
element of the XML document, therefore we
set it to Club.

This is to define the root element of the
resulting XML document

48

January 2007

Will produce in the XML document:
<Club address="my address">
</Club>
Will produce in the XML document:
<Club address="my address">

My club
</Club>
<?xml version="1.0"?>
<IDOCTYPE DAD SYSTEM " C:\Program

Files\IBM\SQLLIB\samples\db2xmI\dtd\d
ad.dtd ">

<DAD>

<validation>NO</validation>

<Xcollection>

<SQL_stmt> SELECT cname, address FROM
club ORDER BY cname </SQL_stmt>

<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Club SYSTEM "'</doctype>

<root_node>

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

This is the structure of elements and <element_node name="Club">

attributes that we have defined <attribute_node name="address">
<column name="address"/>

</attribute_node>
<text_node>
<column name="cname"/>
</text_node>
</element_node>

These are the end tags of all the elements </root_node>
</Xcollection>

</DAD>
Now that the DAD file is ready we can enable the XML collection. The DAD file must be saved as
a file with the extension DAD (for example as D:\xmltemp\club.dad). In the DB2 Command
Window we can execute the following command.

dxxadm

A response with the correct syntax of the dxxadm command comes up:

& DB2 CLP

swxmltemprdxxadm

xxadm [enable_db dbname <-1 userid -p passuword —t tablespacel<{.tablespace2>> 1
xxadm [disable_db dbname <-1 userid —p password>
wxadm Lenable_column dbname tabname column dad_file
{—t tablespace? {-v default_view} {-»r poot_id> <{-1 userid —p password> 1
xxadm [disable_column dbname tabname column <-1 userid -p password> 1
wxadm [enable_collection dbname collectionMame dad_file
<{-t tablespace?> -1 userid —p passuword> 1
xxadm [disable_collection dbname collection <-1 userid -p password> 1

sxmltemp>

Now for the complete command that enables an XML collection:

dxxadm enable_collection riding clubcollection D:\xmltemp\club.dad

cv DBZ CLP

sxmltemprdxxadm enable_collection riding clubcollection D:isxmltempsclub.dad
HBAPAZI Connecting to database "riding".

HBAB63I Enabling collection "“"clubcollection". Please Wait.

HBABG?I HML Extender has successfully enahbhled collection "clubcollection®™.

wxmltempl

clubcollection is the XML collection’s name, there can be more than one XML collection enabled
on the same database.
D:\xmltemp\club.dad is the location of the DAD file.

When the XML collection was enabled, a new row was created in the XML_USAGE table. The
new row contains information about the XML collection (the collection name, the DAD file, etc).

49

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Note that if for some reason the DAD file needs to be altered, it is not enough to change the file.
The XML collection should be disabled (dxxadm disable command) and then enabled with the
altered DAD file. It is only then that the XML collection sees the changes!

Extracting XML documents can be done with the retrieve command. Try to execute the following
command in the Command Window to get more information about the retrieve command:

retrieve

e DB2 CLP

wxmltemplretrieve
sage: retrieve dbname collectionname result_tabname I[max_ndocsi{-o overridelype overridel]

sxmltemp>

The retrieve command requires a result_tablename argument. It is this table that the XML
documents are going to be stored in. Before we can execute the retrieve command successfully, we
have to define a new table to receive the results. Here is a table definition:

CREATE TABLE results(xmldoc DB2XML.XMLVARCHAR)

DB2XML.XMLVARCHAR is a user defined type that comes with the XML extender. This type is
similar to VARCHAR. We use this type because it is compatible with XML extender user defined
functions that we will use later.

e Create a table according to the definition above! You may need to connect to the database first
with the command connect to riding.

When this table has been created, it can be used as a result table for the retrieve command.
Here is the complete retrieve command:

retrieve riding clubcollection results

& DB2 CLP _ (O] x|

xmltempXretrieve riding clubcollection results

onnecting to database riding
n=5:8
errCode=A:8

I Esgtext’DHHQEZBI HHML successfully generated.

wxmltempl LI

The XML documents (5 documents: n=5.0) that have been composed should be stored in the
results table. You can easily check the contents of the results table by executing the following SQL
statement:

SELECT * FROM results

50

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases
Cotnmand Editor Selectsd Edit Wiew Tools Help S
LS BPOS EEDEPEO B @ B
Commimands | GEry Resultsl Access Plan |
B2 A Target | [RiDhG ~| i\dd...'@"ﬁﬂa|°§’@‘i§@%
SELECT * FROM results
- T =

<?xml version="1.0"7»

< IDOCTYPE Club SYSTEM ""=

<Club address="E7Z0 W. Pullman Road "=ippaloosa Horse Club</Club:
=?xml wersiom="1.0"7>

< !DOCTYPE Club SYSTEM ""=

<Club address="Atlantic City South'":Horseriders=/Club>

<?xml version="1.0"7»

< IDOCTYPE Club SYSTEM ""=

<Club address="&E233 Campbellswille Pike"=Morgan Horse Club-=/Club>
<%xml versiomn="1.0"7>»

< !DOCTYPE Club SYSTEM ""=

<Club address="Redwood City"=>Riders Club</Club>

<?xml wersion="1.0"7=

< IDOCTYPE Club SYSTEM ""=

<Club address="Bomneville Basin">Wild Horse Club</Club>

5 receordis] selected.
-
1|| 3

Staterment termination character I;

Let’s go back now to the more complicated structure (from page 46), and create a DAD file.

First we must have an SQL statement that returns all the columns that we need for the XML
elements and attributes. The following SQL statement returns those columns:

SELECT date(race.racetime) as racedate, race.distance, clubname, finishingtime, status,
rname, r.weight AS rweight, hname, h.weight AS hweight, birthyear

FROM race, horse AS h, rider AS r, contestants AS ¢

WHERE race.raceid = c.raceid

AND ridername = rname

AND clubname = Memberclub

AND clubname = ownerclub

AND horsename = hname

This is a valid SQL statement but it is not valid as a DAD SQL statement. A DAD SQL statement
requires an ORDER BY clause that should contain the column that can identify uniquely each
entity. That is, one column for each entity. This facility of DB2 XML extender is quite new and it
may appear to behave inconsistently. Not all entities’ identifiers need to be part of the ORDER BY
clause, only the ones that lead to a level where many elements of the same type can appear. To
make that more understandable we can look at our structure and the entities that exist:

51

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

,1
o

S

Figure 6 Entities of the XML structure

In this structure each entity is associated with one table. So the unique identifier for each entity is
the primary key (or a candidate key) of the associated table. Now there is one problem remaining.
There can only be one column that identifies uniquely an entity, but the tables contestant, rider and
horse require more than one column to identify a row uniquely. (Of course we only need to include
the unique identifiers of the tables race and contestant. The tables rider and horse produce only
one entry per contestant, while there can be several contestants per race.) One way to solve this
problem is to use the table expression and the generate_unique() function to produce a single
column unique identifier'®. After making all these changes in the SQL statement, it should look like
this:

. J

% 1n certain cases this technique may not work. In those cases we may need to create a unique identifier for an
entity in a different way, for example by concatenating the components of the primary key.

52

DB2 & XML v. 4.0.1
1S4/2i1242/2i4042 spring 2007
Models and languages for object,
relational and web databases

Stockholm
January 2007

Department of Computer
And Systems Sciences
SU/KTH

nikos dimitrakas

SELECT race.raceid, date(race.racetime) AS racedate, race.distance, cid, clubname,
status, finishingtime, rname, r.weight AS rweight, hname, h.weight AS hweight, birthyear
FROM race, table(SELECT generate unique() as cid, raceid, ridername, clubname,

horsename, finishingtime, status FROM contestants) AS c, rider AS r, horse AS h

WHERE race.raceid = c.raceid
AND ridername = rname

AND clubname = memberclub
AND clubname = ownerclub
AND horsename = hname
ORDER BY raceid, cid

Creating the element and attribute structure of the XML document is not different from before.

We start with the root element and we continue deeper into the structure.

The root element is the Race element.
Definition in DAD file

<element_node name="Race">
</element_node>

Now for the attributes of the Race element.
Definition in DAD file

<element_node name="Race">
<attribute_node name="Date">
</attribute_node>
<attribute_node name="Distance">
</attribute_node>
</element_node>

Produces in XML document

<Race>
</Race>

Produces in XML document

<Race Date="" Distance="">

</Race>

Now for the Contestant element which can exist several times within a Race element.

Definition in DAD file

<element_node name="Race">
<attribute_node name="Date">
</attribute_node>
<attribute_node name="Distance">
</attribute_node>
<element_node name="Contestant"

multi_occurrence="YES">
</element_node>

</element_node>

Produces in XML document

<Race Date="" Distance="">
<Contestant>
</Contestant>
<Contestant>
</Contestant>

</Race>

53

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

After adding the rest of the elements and attributes of the structure we should have the following:

<element_node name="Race">
<attribute_node name="Date">
</attribute_node>
<attribute_node name="Distance">
</attribute_node>
<element_node name="Contestant" multi_occurrence="YES">
<attribute_node name="Clubname">
</attribute_node>
<attribute_node name="Status">
</attribute_node>
<attribute_node name="Time">
</attribute_node>
<element_node name="Rider">
<attribute_node name="Name">
</attribute_node>
<attribute_node name="Weight">
</attribute_node>
</element_node>
<element_node name="Horse">
<attribute_node name="Name">
</attribute_node>
<attribute_node name="Weight">
</attribute_node>
<attribute_node name="Birthyear">
</attribute_node>
</element_node>
</element_node>
</element_node>

The last thing to do is to place the values from the SQL statement in the structure. It is important
that the order that the values appear in the SQL statement is the same with the order that they
appear in the XML structure (even though there can be columns in the SQL statement that do not
appear in the XML structure). When that is done, all the parts of the DAD file are done. By putting
them together (and changing the XML declaration and the DOCTYPE element of the resulting
XML document) we should get this:

<?xml version="1.0"?>

<IDOCTYPE DAD SYSTEM " C:\Program Files\IBM\SQLLIB\samples\db2xm\dtd\dad.dtd">
<DAD>

<validation>NO</validation>

<Xcollection>

54

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,

nikos dimitrakas relational and web databases

<SQL_stmt>

SELECT race.raceid, date(race.racetime) as racedate, race.distance, cid, clubname, status,
finishingtime, rname, r.weight AS rweight, hname, h.weight AS hweight, birthyear FROM race,
table(SELECT generate_unique() as cid, raceid, ridername, clubname, horsename, finishingtime,
status FROM contestants) AS c, rider AS r, horse AS h WHERE race.raceid = c.raceid AND
ridername = rname AND clubname = memberclub AND clubname = ownerclub AND horsename =
hname ORDER BY raceid, cid
</SQL_stmt>
<prolog>?xml version="1.0" standalone="no"?</prolog>
<doctype>!DOCTYPE Race SYSTEM "d:\xmltemp\race.dtd"</doctype>
<root_node>
<element_node name="Race">
<attribute_node name="Date">
<column name="racedate"/>
</attribute_node>
<attribute_node name="Distance">
<column name="distance"/>
</attribute_node>
<element_node name="Contestant” multi_occurrence="YES">
<attribute_node name="Clubname">
<column name="clubname"/>
</attribute_node>
<attribute_node name="Status">
<column name="status"/>
</attribute_node>
<attribute_node name="Time">
<column name="finishingtime"/>
</attribute_node>
<element_node name="Rider">
<attribute_node name="Name">
<column name="rname"/>
</attribute_node>
<attribute_node name="Weight">
<column name="rweight"/>
</attribute_node>
</element_node>
<element_node name="Horse">
<attribute_node name="Name">
<column name="hname"/>
</attribute_node>
<attribute_node name="Weight">
<column name="hweight"/>
</attribute_node>
<attribute_node name="Birthyear">
<column name="birthyear"/>
</attribute_node>
</element_node>
</element_node>
</element_node>
</root_node>
</Xcollection>
</DAD>

55

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

The DAD file contains information about the XML declaration and the DOCTYPE element of the
XML documents to be composed. This information is the following:

The XML document is composed according to XML version 1.0 and it is not standalone (it is
associated to a DTD file):

<prolog>?xml version="1.0" standalone="no"?</prolog>

The DOCTYPE of the XML document is Race. That means that the root element of the XML
document is an element called Race. The SYSTEM specifies that the XML document is supposed
to follow the rules in the DTD file d:\xmltemp\race.dtd:

<doctype>!DOCTYPE Race SYSTEM "d:\xmltemp\race.dtd"</doctype>

The file d:\xmltemp\race.dtd does not exist yet. In section 5.4 we will create this DTD file and we
will use the XML documents composed with this DAD file.

Assuming that the DAD file has been saved as d:\xmltemp\race.dad we can enable an XML
collection called racecollection by submitting the following command in the Command Window:

dxxadm enable_collection riding racecollection d:\xmltemp\race.dad

¢ DB2 CLP

sxmltempXdxxadm enable_collection riding racecollection d:isxmltempsrace.dad
®BABA2ZI Connecting to database "riding".

HBAB63I Enabling collection "racecollection". Please Wait.

HBABG?I HML Extender has successfully enahbhled collection "racecollection®.

saxmltemp

When the new XML collection has been enabled, use the retrieve command to compose XML
documents and place them in the results table (You may want to remove the previous XML
documents from the results table first) :

retrieve riding racecollection results

cv DBZ CLP =]

wxmltemplretrieve rpiding racecollection results
H]

onnecting to database riding
n=5:8
errCode=0:8
mezgtext’ DHXQAZAI WML successfully generated.
» :B

sxmltemp ;I

Five XML documents are now stored in the table results.

56

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

5.3 Extract XML documents into XML files

So far we have composed XML documents and stored them in a table. It can be desired to extract
these XML documents from the database and keep them as separate files. To do that, we will use
the XML extender’s Content function.

Like all other functions, the Content function can be used in a SELECT statement. The Content
function has three different sets of parameters. The one that we will use is the following:

Content(xmlobj, filename)

xmlobj is the XML document as an XMLVARCHAR.

Filename is a string with the fully qualified filename and location of the file where the XML
document will be saved.

When this function is executed it returns the filename to where the XML document was saved.

Here is an example of how to use this function:
SELECT db2xml.Content(xmldoc, 'd:\xmltemp\my.xml") FROM results

This command produces a file called d:\xmltemp\my.xml which contains the XML document that
is stored in the xmldoc column of the results table. The problem with this command is that it tries
to save each and every XML document from the xmldoc column as a file called
d:\xmltemp\my.xml. Consequently only the last XML document gets saved. The next figure shows
what this command returns:

& Command Editor 1
Command Editor Zelected Edt Wiew Toolz Help

I el @@fﬁﬂ&ﬁ@{{@

Comriands

Guery Results | Access Plan |
BB 3 Targetl[leDlNG Ll &dd...|@q@a|°§'@‘i3"£—£\%

SELECT dbZxml.Content (xmldoc, 'd:hvzmltempimy.zml') FROM results

d: v xmltenp oy, xml
c:yxmltenpwy . Xml
c:yxmltenpwy . Xml
- xmltenpiny. xml
- xmltenpiny. xml

£ record{s) selected.

a i

Statement termination character I;

57

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

An easy way to produce unique names for all the XML files saved, is to use the
generate_unique() function to produce the filename:

SELECT db2xml.Content(xmldoc, (‘d:\xmltemp\my' CONCAT HEX(generate_unique())
CONCAT ".xml')) FROM results

This command will produce a unique key for every row in the results table, and then concatenate a
hexadecimal representation of that unique key into the filename. The next figure shows a result of
this command:

‘= Command Editor 1 =

Command Editor - Selected Edit Wiew Toole Help
LEBFREER0FRE B @

Commancs

Guery Results | Access Plan |

§ f AT b >
LS Targetl[j RIDING v| | = R | o @‘& ’@{
SELECT dbZxml.Content {xmldoc, {'d:ixmltempimy' CONCAT HEX{generate_unicque()) CONCAT '_xml'}) FROM results
i |

d:hxmltenp\nyZ0060121143105017313000000. xml
d: b xmltenp \nyZ0060121143105055282000000. xml
iy xmltenp \nyZ00601lZ11423108058211000000, xml
d: v xmltenp\nyZ0060121143105062535000000. xml
d: b xmltenp \nyZ0060121143105066188000000. xml

E recordis) selected.

M o

Statement termination charactar I;

The files are now stored on the hard disk and can be viewed with any editor, attached to an email,
etc.

5.4 Store XML documents in an XML column

In this section we will create an XML column and store in it the XML documents that we generated
before. This is basically the same procedure that we followed in section 3.1 when we created a
database and stored in it the XML documents for the books. In this section we will look closer and
in more detail at how the procedure works. We will do the following:

Create a database with a table where the XML documents will be stored
Enable the database for XML

Prepare a DTD for controlling the incoming XML documents

Store the DTD in the DTD_REF table

Prepare a DAD file for the XML column

Enable the XML column

Insert XML documents into the XML column

NogakrownE

e Start by creating a database! You will need to disconnect from the other database if you are still
connected. Use the command DISCONNECT riding.

58

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Here is a command that creates a database:
CREATE DATABASE myxmilcol

The database is now ready to be enabled for XML.

e Enable the database for XML by issuing the following command in the Command Window:
dxxadm enable_db myxmlcol

e Connect to the new database and create a table for the XML documents! The table should have
a column of one of the three XML extender data types (XMLVARCHAR, XMLCOLB,
XMLFILE). Here we use XMLVARCHAR.

CONNECT TO myxmlcol
CREATE TABLE xmicol (xmldoc DB2XML.XMLVARCHAR)

Note that this table can contain many other columns. Those columns do not interfere with the
XML column.

When an XML document is inserted into the database, it has to be controlled. If there is no control
of incoming XML documents, the database will soon become corrupt. To control an XML
document we need a set of rules of what is and is not allowed. Those rules can be defined ina DTD
file.

Before defining a DTD, we must know the exact structure of the XML documents that we want the
DTD file to control (and accept). The XML documents that we want to insert into the XML
column, are the ones we created earlier from the XML data in the XML collection. So the structure
is already defined.

Now let’s create a DTD file to represent that structure.

First we have a Race element. <I[ELEMENT Race>

The Race element has a sub-element called <!ELEMENT Race (Contestant*)>
Contestant, that can occur zero or more

times (denote this with an asterisk after the
element name).

The Race element has two attributes (Date | <!ELEMENT Race (Contestant*)>
and Distance). <IATTLIST Race

Date CDATA #REQUIRED
Distance CDATA #REQUIRED>

59

Department of Computer
And Systems Sciences
SU/KTH

nikos dimitrakas

We continue with the Contestant element.

The Contestant element has two sub-
elements called Rider and Horse, that can
occur once and only once within a
Contestant element.

The Contestant element has three attributes
(Clubname, Status and Time) The first two
have to be there, the third can be missing.
Status can only be one of four predefined
values: finished, walkover, disqualified and
dropout.

The Rider element. The Rider element has no
content.

The Rider element has two attributes (Name
and Weight). Name is required, Weight is
not.

The Horse element. The Horse element has
no content
The Horse element has three attributes
(Name, Weight and Birthyear). Only Name
IS required

DB2 & XML v. 4.0.1
1S4/2i1242/2i4042 spring 2007
Models and languages for object,
relational and web databases

Stockholm
January 2007

<IELEMENT Contestant>

<IELEMENT Contestant (Rider, Horse)>

<IELEMENT Contestant (Rider, Horse)>
<IATTLIST Contestant

Clubname CDATA #REQUIRED

Status (finished | walkover | disqualified
| dropout) #REQUIRED

Time CDATA #IMPLIED>

<I[ELEMENT Rider EMPTY>

<I[ELEMENT Rider EMPTY>
<IATTLIST Rider
Name CDATA #REQUIRED
Weight CDATA #IMPLIED>

<I[ELEMENT Horse EMPTY>

<IELEMENT Horse EMPTY>
<IATTLIST Horse
Name CDATA #REQUIRED
Weight CDATA #IMPLIED
Birthyear CDATA #IMPLIED>

e Put all the elements together and save the file, for example as d:\xmltemp\race.dtd

Here is the content of the file race.dtd:

<IELEMENT Race (Contestant*)>
<IATTLIST Race

Date CDATA #REQUIRED

Distance CDATA #REQUIRED>
<I[ELEMENT Contestant (Rider, Horse)>
<IATTLIST Contestant

Clubname CDATA #REQUIRED

Status (finished | walkover | disqualified | dropout) #REQUIRED

Time CDATA #IMPLIED>
<IELEMENT Rider EMPTY>
<IATTLIST Rider

Name CDATA #REQUIRED

Weight CDATA #IMPLIED>
<IELEMENT Horse EMPTY>

60

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

<IATTLIST Horse
Name CDATA #REQUIRED
Weight CDATA #IMPLIED
Birthyear CDATA #IMPLIED>

Now we can insert the DTD file into the DTD_REF table (which was created when we enabled the
database for XML).

Execute the following INSERT statement, to insert the DTD file into the DTD_REF table of the
database:

INSERT INTO db2xml.DTD_REF VALUES ('d:\xmltemp\race.dtd’,
db2xml. XMLClobFromFile('d:\xmltemp\race.dtd’), O, 'userX', 'userZ', 'userY")

The first value specifies a name for the inserted DTD file, this is also the primary key of the
DTD_REF table. It is usual to set the fully qualified name of the file as this value.

The second value is the DTD file itself. This value has to be of XMLCLOB type, hence we use the
XML extender’s function XMLClobFromFile to import the DTD file into an XMLCLOB.

The third value (called USAGE_COUNT) shows how many DAD files refer to this DTD file. It
has to always be set to O when a DTD file is first being inserted.

The rest of the parameters are optional and specify the following: AUTHOR, CREATOR,
UPDATOR.

When a DTD file has been inserted into the DTD_REF table, it can be referenced by DAD files
associated with XML columns or XML collections in the database in question.

Note that as with DAD files, if the DTD file has to be altered then it is not enough to change the
file. The row for the old DTD has to first be removed from the DTD_REF table. If the DTD is in
use then the XML column or XML collection that is using it has to first be disabled. It is always
possible to see if a DTD in the DTD_REF table is in use by checking the usage count value for a
specific DTD.

We can now define the DAD file for the XML column. The DAD file will contain a reference to
the DTD file and information about the side tables. It is not important to have side tables but we
will use one side table to illustrate how this feature works. We will have a side table with two
columns: Date and Distance.

The DAD file starts, as before, with the following lines:
<?xml version="1.0"?>
<IDOCTYPE DAD SYSTEM " C:\Program

Files\IBM\SQLLIB\samples\db2xml\dtd\dad.dtd">
<DAD>

61

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Then we have an element called dtdid, where we define the DTD to be used to control incoming
XML documents:

<dtdid>d:\xmltemp\race.dtd</dtdid>

Then the validation element, in this case we set the validation to YES. This activates the control of
the incoming XML documents:

<validation>YES</validation>

Now we have the Xcolumn element:

<Xcolumn>

Within this element we can specify the side tables (in this case only one side table), and the
mapping between elements or attributes and the columns of the side tables. In this way the side
tables will be automatically updated every time a new XML document is inserted. Here is the

content of the Xcolumn element:

A table element with a name attribute. Thatis <table name="race_st">
the name of the side table.

A column element for each column of the side <column name="Racedate”

table. The name attribute indicates the name of type="date”

the column, the type attribute indicates the data- path="/Race/@Date”
type of the column, the path attribute indicates multi_occurrence="NO"/>
where in the XML document’s structure to get

the value from, the multi_occurrence attribute <column name="Racedistance”
indicates whether or not the specified path can type="integer”

appear many times within an XML document. path="/Race/@Distance”
(Note that an empty element can be closed with multi_occurrence="NO"/>

a “/” in the end of the opening tag)

And the closing tag of the table element. </table>

And of course the closing tags of the Xcolumn element and the DAD element:

</Xcolumn>
</DAD>

¢ Now save the DAD file (for example d:\xmltemp\racecolumn.dad)!

62

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

e Enable the XML column! Here is the command:
dxxadm enable_column myxmlcol xmlcol xmldoc d:\xmltemp\racecolumn.dad

where myxmicol is the database name, xmlcol is the name of the table and xmldoc is the name of
the column in the table.

=" DB2 CLP -0l =|

SSQLLIBSBIN»dxxadm enable_column myxmlcol xmlcol xmldoc d:“xmltemp“racecolumn.

a

BaABBA2I Connecting to database myxmlcol.
REZAAAAI Enabling column xmldoc. Pleasze Wadit.
REAA22] Column xmldoc enahled.

SSOQLLIB-BIN>

|

Now that the XML column has been enabled, we can insert XML documents into it. To insert an
XML document we can execute an INSERT statement. When inserting an XML document into a
column of a table, we must always think of the data type of the column. The column, to which we
will insert the XML documents is of the following type: DB2XML.XMLVARCHAR. Fortunately,
there is a set of functions for transforming XML documents to and from all the different XML data
types. One of those functions is this: DB2XML.XMLVarcharFromFile(). This function takes one
argument: the full filename as a string and returns the content of that file (the XML document) as a
DB2XML.XMLVARCHAR. Here is an example of an INSERT statement:

INSERT INTO xmlcol (xmldoc) VALUES
(DB2XML.XMLVarcharFromFile('d:\xmltemp\my20000603132654013484000000.xml"))

The file d:\xmltemp\my20000603132654013484000000.xml is just one of the files we
generated before (see section 5.3). The filenames are random, so the files that you have, have
different filenames from the filenames that appear in section 5.3.

When the XML document has been inserted into the database, the side tables have also been
updated. In our case there should be one new record in the race_st table.

63

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

After inserting all five XML documents in the XML column the content on the side table is
following:

& Command Editor 1
Comtmand Editor Selected Edit Wiew Toolz Help

nEEPBEEELUReEe B 0

Commancs

GQuery Results | Access Plan |

L A S Targetl[j MY XMLCOL ll Aeld... |

select * from race st

SCBaM+bHB @0

s
select * from race_st —J
DX{RO0T_ID DACEDATE DACEDISTANCE
®'Z0060121144634730120000000" OLF/Z23 /2000 1000
®'Z00601211446347523430000000" 09/13,/2000 1500
®'Z0060121144634821608000000" 0Z2/24,/2001 pdn [u]]
®'Z00601211446345842857000000" 047022000 1000
®'Z006012114463458932844000000" 0&/05,/2001 1000

E recordi{s) selected.

|
4 | of

Statement termination character I;

If the XML document does not comply with the DTD file, specified in the DAD file, then it will be
rejected. That can easily be tested; try to insert an XML document with the wrong type of elements
or attributes.

64

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

Here is what happened when an invalid XML document was inserted into the XML column:

& Command Editor 1 [=] 3
Command Editor Selected Edit Wiew Toolz Help :

LR BO ID0 AR B0 —

Comtnands:

Guery Results | Access Plan |
B3 Targetllf']M\f}(MLCOL LI Add... | [B”EDZ]|°§’ I%‘ii‘!s“' %

INSERT INTO xzmlcol {(xmldoc) VALUES (DEZXML.XMLVarcharFrowmFile{'d:'xmltempibad.xzml')):

—————————————————————————————— Commands Entered -—--——-—---—---—-———-————-——————-—
INSERT INTO zmlcol {xmldoc) VALTEZ (DEEXML.XMLVarcharFrowmFile!'d:'wzmltempibad.xml')):
INSERT INTO zmlcol (xmldoc) VALUES (DEEZHML.XMLVarcharFromFile('d:hwimltempibad. xml'))
DEZ1034E The command was processed as an 50L statement because it was not a

walid Command Line Processor command. During S0L processing it returned:

S0LO0443M Poutine "WALIDATE" (specific name "") has returned an error SQLSTATE

with diagnostic text "DXHQO47E Parser error on line "E" column "4&":

"Accribuce '". ESQLETATE=38K13

SQLO443N Poutine "VALIDATE" (specific name "") has returned an error SQLSTATE with diagnostic text "DXMQO47E Parse:
Explanation:

An ZQLETATE was returned to DEE by routine "<routine-name="
{specific name "<specific-nawe>"), along with message text
"atext=". The routine could be a user-defined function or a
user-defined method.

User Response:

The user will need to understand the meaning of the error. See
Four Database Administrator, or the author of the routine.

Errors that are detected by the IEM supplied functions in the -
a n . v _I

B i - . I

Statement terminstion character I ;

An XML document is rejected when:

e The element structure is not as specified in the DTD file

e The attributes of the elements are not following the rules of the DTD file

e The SYSTEM of the XML document (specified in the DOCTYPE element) is not the same as
the one in the DAD file. Both should point to the same DTD file.

On the other hand an XML document that is defined as standalone (in the XML declaration) can be
accepted if it does not break any of the rules above.

The XML column can now be queried in the way we saw in section 4.2.

65

Department of Computer DB2 & XML v. 4.0.1 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 spring 2007 January 2007
SU/KTH Models and languages for object,
nikos dimitrakas relational and web databases

6 Internet Resources

XML & DTD Tutorials

http://L.238.dsv.su.se:86/tutorial/
http://www.w3schools.com/xml/default.asp
http://www.spiderpro.com/bu/buxmim001.html

http://msdn.microsoft.com/library/en-us/xmlsdk/html/79¢78508-c9d0-423a-a00f-
672e855de401.asp

DB2 XML extender

http://www-4.ibm.com/software/data/db2/extenders/xmlext/

XML/SOL

http://docs.openlinksw.com/virtuoso/fn_ XMLELEMENT.html

7 Epilogue

When all this is done, you should have quite a good understanding of how to use DB2 to manage
XML documents and XML data.

I hope you have enjoyed this compendium. Please give me feedback!
The Author

ot dimitral

66

