
Department of Computer
and Systems Sciences
SU / KTH

Component Based Development
With Enterprise JavaBeans

Compendium
v. 1.2

IS7/2I1404

Model driven development of components

Autumn 2003

http://L238.dsv.su.se:86/courses/IS7/

nikos dimitrakas

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 2

Table of contents
1 INTRODUCTION ... 3

1.1 HOMEPAGE... 3
1.2 THE ENVIRONMENT .. 3

2 JBOSS AND EJB ... 4
2.1 INSTALLING JBOSS... 4
2.2 STARTING JBOSS.. 4
2.3 DEPLOYING EJBS... 5

3 DATABASE AND ODBC.. 5
3.1 THE BOOK DATABASE.. 5

4 EXERCISES... 6
4.1 HELLO WORLD... 7

4.1.1 Bean class.. 8
4.1.2 Home interface .. 9
4.1.3 Remote interface.. 9
4.1.4 Deployment descriptor .. 10
4.1.5 Packaging and deployment.. 11
4.1.6 Test client .. 12
4.1.7 Learning by errors... 15

4.2 DATABASE EJBS .. 16
4.2.1 Creating an ODBC Data Source ... 17
4.2.2 Configuring JBoss connection pool... 19
4.2.3 Data Classes.. 19
4.2.4 Retrieving Data ... 21

4.2.4.1 Bean class ...21
4.2.4.2 Home and remote interface...26
4.2.4.3 Deployment descriptor..28
4.2.4.4 Packaging and deployment ...28
4.2.4.5 Test client ...29

4.2.5 Manipulating Data .. 32
4.2.5.1 Bean class ...33
4.2.5.2 Home and remote interface...35
4.2.5.3 Deployment descriptor..35
4.2.5.4 Packaging and deployment ...36
4.2.5.5 Test client ...36

5 ASSIGNMENTS .. 38

6 WHEN THINGS HAVE GONE BAD! .. 38

7 INTERNET RESOURCES ... 38

8 EPILOGUE .. 39

Table of figures
FIGURE 1 BOOK DATABASE... 6

FIGURE 2 HELLO WORLD SYSTEM OUTLINE ... 7

FIGURE 3 BOOKMGR SYSTEM OUTLINE .. 22

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 3

1 Introduction
This compendium contains the following:
• An introduction to the JBoss J2EE server and its facilities for deploying and running EJBs
• A short presentation of the database used by some of the EJBs in the exercises
• Step-by-step exercises for creating, deploying, running and testing EJBs
• Assignments

It is recommended that you read through the entire compendium before beginning with the
exercises. It is of course necessary to have some basic understanding of Microsoft Windows,
Relational Databases (and SQL), Java, Component Based Development (CBD) and the EJB
architecture/component model. For the last two the following reading is recommended prior to
reading this compendium:
• Lecture notes on CBD and EJB by Martin Henkel
• The J2EE Tutorial by SUN

1.1 Homepage
Information about this compendium can be found here:
http://L238.dsv.su.se:86/courses/IS7

The following can be found at this address:
• Files

The latest version of the compendium and all the files needed to complete the exercises in the
compendium.

• FAQ
Here there is a list of corrections and explanations.

• Links
Internet resources that can be helpful when working with the compendium.

1.2 The environment
For completing the exercises in this compendium we will use the following facilities/software:
 Lite version of JBoss that is used to run EJBs
 MSAccess used for the example database
 ODBC driver/manager used for accessing the database from the EJBs
 Java tools (compiler, jar-tool)
 Command prompt (execution of commands, etc.)
 Text editor (of your choice) for editing of batch files, java source code and XML files

Most of this environment does not require any particular configuration. JBoss needs some
configuration. How to set up the necessary environment for JBoss is described in chapter 2.

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 4

2 JBoss and EJB
In this chapter we will set up the necessary environment for deploying and running the EJBs that
we will create later. We will also take a look on the specific details of JBoss that are relevant for
EJB deployment.

2.1 Installing JBoss
The standard version of JBoss is quite large since it includes a lot more than what we need for the
exercises in this compendium. Therefore, we have created a lite version that only includes the
necessary components (the JBoss Java engine and the EJB container). This version of JBoss is
zipped in a file named JBossIS7.zip and can be downloaded from the following locations:

• \\DB-SRV-1\StudKursInfo\IS7 ht2003\CBDwithEJB\JBossIS7.zip
• http://L238.dsv.su.se:86/courses/IS7/JBossIS7.zip

By just extracting the contents of the file at your home directory (normally found under M:), you
get a working JBoss installation.

2.2 Starting JBoss
To start the JBoss server just execute the file run.bat that is located in the directory jboss\bin
(relative to where you extracted the JBossIS7.zip). In the rest of this compendium we will assume
that JBoss resides at M:\jdb042\jboss. In this case jdb042 represents the current user-name. You
will simply have to replace jdb042 with your user-name to acquire the correct paths.

Starting the JBoss server takes approximately 1 minute. A command prompt window (JBoss's
standard output) will during this time show the progress of loading the server and deploying
configuration files and other java components (for example the EJB container). When the server
has finished loading a message will appear stating that JBoss has started:

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 5

This window is now locked by JBoss. To stop the server press Ctrl-C while the window is active.
Closing the window will have a similar effect to pressing Ctrl-C, but Windows may start
complaining of the process not responding. It is therefore best to use Ctrl-C to shut down the JBoss
server.

JBoss will use this window for any messages during run-time. For example EJB deployment done
while the server is running will produce a message in this window. Also, server error messages
appear in this window, so make sure to keep an eye on the message window.

At this point it is also important to know that the JBoss server listens on port 1099. The server
should have confirmed this during start-up with this message:

INFO [NamingService] Listening on port 1099

This is very useful information that we need when we later build java programs that need to access
the JBoss server.

2.3 Deploying EJBs
To deploy an EJB in JBoss we need a jar file containing
1. The EJB bean class
2. The applicable interfaces (home and remote) for the EJB
3. All necessary helper classes, such as data classes and exception classes
4. A deployment descriptor for the EJB

The jar file only needs to be placed in the jboss\server\default\deploy directory. The JBoss
Server will then deploy it automatically. The reverse is also possible: Removing a deployed jar file
from this directory will cause JBoss to undeploy it.

3 Database and ODBC
In the exercises in chapter 4 we will create EJBs. Some of them will provide business logic that
requires a database. To illustrate this database functionality we will use a sample database. This
chapter describes this database.

3.1 The Book Database
The database is an MS Access database named book.mdb. The database file can be downloaded
from

• \\DB-SRV-1\StudKursInfo\IS7 ht2003\CBDwithEJB\book.mdb
• http://L238.dsv.su.se:86/courses/IS7/book.mdb

Download a copy of the database and place it on your home directory!

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 6

The figure bellow shows the tables included in the database and their relationships:

Figure 1 Book database

The main entities of the database are the customers and the books. Customers place orders that
contain one or more orderitems. Each orderitem represents one book in one or more copies
(attribute amount). Each book has a title, a year (of publishing) and a current price. (Since this is
the current price the actual price at the time of an order is stored in OrderItem.) Each book has one
or more authors and one or more subjects.

The database is populated with enough data for our simple testing purposes. MS Access can be
used to browse and edit the database.

4 Exercises
In this chapter we will go through the entire process of creating, deploying and running/testing 3
EJBs. The first one (section 4.1) will be a simple "Hello World" EJB, while the next two (section
4.2) will provide some basic database functionality. All the files needed for the exercises in this
chapter as well as the result files of the exercises (completed) are available here:

• \\DB-SRV-1\StudKursInfo\IS7 ht2003\CBDwithEJB
• http://L238.dsv.su.se:86/courses/IS7

The files used in the exercises in this chapter can be reused as templates for the assignments and the
project work!

The exercises that follow contain quite a lot of java code. A good way to work with the step-by-
step descriptions of creating the necessary java files is to open this compendium in MS Word and
then copy and paste the java code from the compendium into the appropriate java files. Another
possibility is, of course, to just download the complete files one by one and place them in the
appropriate directories.

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 7

The exercises also include compiling, packaging, copying and running files. There are batch files
that help with those operations and they are also available for download. These batch files need to
be edited so that the correct home directory is defined.

4.1 Hello World
In this exercise we will create an EJB component that simply returns a string "Hello World" when
it's only business method hello() is called. Our EJB will be a stateless session bean and will only
allow remote access. The following figure outlines the structure of the "full Hello World system":

Client
program

JBossHelloWorld
EJB

I
n
t
e
r
f
a
c
e

"Hello World"

hello()

depl.
descr.

Figure 2 Hello World system outline

In short here is what we have to do:
• Create a java class HelloWorldBean where the method hello() will be implemented.
• Create a home interface HelloWorldHome with the signatures of the create methods.
• Create a remote interface HelloWorld with the signatures of the business methods.
• Create a deployment descriptor file ejb-jar.xml.
• Package our EJB in a jar file and deploy it.
• Create a test client for our EJB.
• Run the test client.

Before we begin programming we have to decide a package structure. As the root package we will
use IS7. Under this we will have a package helloworld where all the files for the EJB will be. So
we have to create two directories IS7 and helloworld. We can put them under M:/jdb042. In the
directory helloworld we will place the interfaces and the bean class of the EJB and a directory
META-INF where the deployment descriptor will be placed. We should have the following directory
structure (the profiles directory should already be available at your home directory!):

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 8

4.1.1 Bean class
So let's start with the class HelloWorldBean:

1. Create a file HelloWorldBean.java (in IS7\helloworld) and open it for editing (for example in

SciTE or NetObjects ScriptBuilder)!

2. Define the package: package IS7.helloworld;

3. Define the class: public class HelloWorldBean implements javax.ejb.SessionBean {}

4. The session bean must implement at least one ejbCreate() method (A stateless session bean

can only contain one ejbCreate() method which cannot take any arguments). In our case it's
enough with an empty one: public void ejbCreate() {}

5. We also need to implement our business method hello():

public String hello()
{
 return "Hello World!";
}

6. All session beans must also implement the following methods (that in this case can be left
empty):
public void ejbRemove() {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void setSessionContext(javax.ejb.SessionContext ctx) {}

The complete content of the HelloWorldBean.java should be the following:

package IS7.helloworld;

public class HelloWorldBean implements javax.ejb.SessionBean
{
 public void ejbCreate() {}
 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void setSessionContext(javax.ejb.SessionContext ctx) {}

 public String hello()
 {
 return "Hello World!";
 }
}

7. The session bean HelloWorldBean is now complete and can be compiled! In order to compile it

the compiler must know where the necessary EJB framework classes can be found. (They are
available in the file M:\jdb042\jboss\server\default\lib\jboss-j2ee.jar.)

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 9

In a new command prompt window move to your home directory (cd M:\jdb042 and M:) and
compile the session bean with the following command:
javac IS7\helloworld*.java -classpath jboss\server\default\lib\jboss-j2ee.jar

4.1.2 Home interface
Next we have to create a home interface for our session bean:

8. Create a file HelloWorldHome.java (in IS7\helloworld) and open it for editing!

9. Define the package: package IS7.helloworld;

10. Define the interface: public interface HelloWorldHome extends javax.ejb.EJBHome {}

11. This interface must contain a create() method for each ejbCreate() method in the class

HelloWorldBean. These create() methods, unlike the ejbCreate() methods, must return an
instance of the remote interface HelloWorld (that we have not yet defined) and must also throw
a RemoteException and a CreateException:
HelloWorld create() throws java.rmi.RemoteException, javax.ejb.CreateException;

12. Our home interface is now ready, but we cannot compile it until we have the remote interface.

The complete content of the HelloWorldHome.java should be the following:

package IS7.helloworld;

public interface HelloWorldHome extends javax.ejb.EJBHome
{
 HelloWorld create() throws java.rmi.RemoteException,
 javax.ejb.CreateException;
}

4.1.3 Remote interface
Naturally we must now define the remote interface HelloWorld:

13. Create a file HelloWorld.java (in IS7\helloworld) and open it for editing!

14. Define the package: package IS7.helloworld;

15. Define the interface: public interface HelloWorld extends javax.ejb.EJBObject {}

This interface must contain the signatures of all business methods defined in the session bean.
All the business methods must in this interface throw a RemoteException. In our case there is
only the method hello():
public String hello() throws java.rmi.RemoteException;

16. Now that both interfaces are ready and in place we can compile them (using the same compiler
command as before).

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 10

The complete content of the HelloWorld.java should be the following:

package IS7.helloworld;

public interface HelloWorld extends javax.ejb.EJBObject
{
 public String hello() throws java.rmi.RemoteException;
}

4.1.4 Deployment descriptor
The final component of our EJB before we can deploy it is the deployment descriptor. This is a
simple xml file that tells the JBoss server the names and locations of the session bean and its
interfaces.

17. Create a directory META-INF (in IS7\helloworld)!

18. Create a file ejb-jar.xml (in IS7\helloworld\META-INF) and open it for editing!

19. This is an xml document so it has to start with the two standard xml directives. (The EJB

deployment descriptor is defined by SUN. The full dtd can be found at
http://java.sun.com/dtd/):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar
 PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
 'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 11

20. The root element is <ejb-jar> and it contains all the necessary elements for defining the
components of one or more EJBs. The main two sub-elements are <enterprise-beans> and
<assembly-descriptor>. The first one is where the components and type of the EJBs are
specified, while the second one contains security and transaction information for the EJBs and
their methods. The elements <description> and <display-name> can also be used for
providing useful information. Here is the content of the <ejb-jar> element for the HelloWorld
EJB:

 <description>
 Hello World EJB as part of the CBD with EJB compendium for IS7 ht2003
 </description>
 <display-name>Hello World EJB</display-name>
 <enterprise-beans>
 <session>
 <ejb-name>HelloWorld</ejb-name>
 <home>IS7.helloworld.HelloWorldHome</home>
 <remote>IS7.helloworld.HelloWorld</remote>
 <ejb-class>IS7.helloworld.HelloWorldBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>HelloWorld</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

This defines a stateless (<session-type>) session EJB (<session>) with container managed
transactions (<transaction-type>). It also defines that all (*) the methods (<method-name>)
must be within transactions (<trans-attribute>).

4.1.5 Packaging and deployment
21. Start the JBoss server if it is not already running! (This will make sure that deployment error

messages appear after all start up messages of the server)

22. With the deployment descriptor file ready we have all necessary files for packaging and

deploying the HelloWorld EJB. The only thing we need to do is put all the files in a jar file
(packaging) HelloWorldJAR.jar and copy it to the deployment area of JBoss (deployment)
(the directory jboss\server\default\deploy). We do the packaging with the following
commands:
jar cMvf HelloWorldJAR.jar IS7\helloworld*.class
jar uMvf HelloWorldJAR.jar -C IS7\helloworld META-INF\ejb-jar.xml

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 12

The first command adds the class files to the jar file. The second command adds the
deployment descriptor to the jar file.

23. The EJB is now packaged and we can deploy it with the following command:
copy HelloWorldJAR.jar jboss\server\default\deploy

This command simply copies the jar file to JBoss which automatically deploys it. If JBoss was
not running, the EJB would be deployed when JBoss started.

24. Check for any deployment error or warnings at the JBoss server window

25. At this point the HelloWorld EJB is available to clients. The only thing missing is a test client.

In order to develop our test client we need to now the interfaces (home and remote) of the EJB.
Since the developer of the EJB and the developer of the clients accessing it aren't necessarily
the same, we have to assume that the developer of the client does not have access to the original
IS7.helloworld package. Therefore we can create a jar file with the two interfaces and make it
available to the client developers. We can call it HelloWorldInterface.jar and we can create it
with the following command:
jar cMvf HelloWorldInterface.jar IS7\helloworld\HelloWorld.class
IS7\helloworld\HelloWorldHome.class

4.1.6 Test client
Taking now the role of the client developer we only have access to the HelloWorldInterface.jar. We
also know that it is deployed on a JBoss server listening on port 1099. In order to access JBoss and
the HelloWorld EJB we need to use the following classes:
javax.naming.Context
javax.naming.InitialContext
javax.rmi.PortableRemoteObject

26. We can start developing our test client by defining the package and class name. We will use a

package test and call the class HelloWorldTestClient.

27. Create a directory test at your home directory (in our case M:\jdb042\test)!

28. Create a new file HelloWorldTestClient.java (in the directory test) and open it for editing!

29. Define the package: package test;

30. Import the necessary classes:

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import IS7.helloworld.*;

31. Define the class: public class HelloWorldTestClient {}

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 13

32. We only need a main() method, so we can start be defining it:
public static void main(String[] args) { }

Inside the main() method we will need to first establish a context (a description of how to access
the server), then using this context look up the HelloWorld EJB, then request an instance of the
session bean on which we can finally call the business method hello(). We start by creating a
context and setting up its environment (We do all this within a try clause since there are possible
exceptions). The values below are adjusted for our configuration of JBoss and only for running the
client on the same machine as the JBoss server:

try
{
 Context ctx = new InitialContext();
 ctx.addToEnvironment(Context.INITIAL_CONTEXT_FACTORY,
 "org.jnp.interfaces.NamingContextFactory");
 ctx.addToEnvironment(Context.PROVIDER_URL, "127.0.0.1:1099");
 //instead of 127.0.0.1 you can use localhost
 ctx.addToEnvironment("java.naming.factory.url.pkgs",
 "org.jboss.naming:org.jnp.interfaces");

33. Still inside the try block we have to ask the context to look up the HelloWorld EJB. The

context will return an object which we can (in a bit unusual way) cast into an instance of the
HelloWorldHome interface. Using this instance we can call the create() method to acquire an
instance of the HelloWorld interface:
Object obj = ctx.lookup("HelloWorld");
HelloWorldHome home = (HelloWorldHome)
 PortableRemoteObject.narrow(obj, HelloWorldHome.class);
HelloWorld helloWorld = home.create();

34. The last thing to do before the end of the try block is to call the business method hello(). We

can for example print the result of the hello() method:
System.out.println(helloWorld.hello());

35. We can now finish the try block and add a catch block to print any unexpected exception:

} //end of try block
catch (Exception ex)
{
 System.err.println("Caught an unexpected exception!");
 ex.printStackTrace();
}

The complete content of the HelloWorld.java should be the following:

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 14

import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import IS7.helloworld.*;

public class HelloWorldTestClient
{
 public static void main(String[] args)
 {
 try
 {
 Context ctx = new InitialContext();
 ctx.addToEnvironment(Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");
 ctx.addToEnvironment(Context.PROVIDER_URL,
"127.0.0.1:1099");//instead of 127.0.0.1 you can use localhost
 ctx.addToEnvironment("java.naming.factory.url.pkgs",
"org.jboss.naming:org.jnp.interfaces");

 Object obj = ctx.lookup("HelloWorld");

 HelloWorldHome home = (HelloWorldHome)
PortableRemoteObject.narrow(obj, HelloWorldHome.class);
 HelloWorld helloWorld = home.create();

 System.out.println(helloWorld.hello());
 }
 catch (Exception ex)
 {
 System.err.println("Caught an unexpected exception!");
 ex.printStackTrace();
 }
 }
}

36. We are now ready to compile and run our test client. In order to compile the test client we need

the classes that we have imported and some classes included in the EJB framework. All the
classes are available in the following two jar files:
HelloWorldInterface.jar
jboss\client\jbossall-client.jar

We can compile our test client with the following command:
javac test\HelloWorldTestClient.java -classpath jboss\client\jbossall-
client.jar;HelloWorldInterface.jar

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 15

37. To run the test client we only need to have
• the classes necessary for the environment of the context, which are all included in the

following jar file: jboss\client\jbossall-client.jar
• the jar file with the home and remote interfaces of the EJB. (We used the same jar file

when we compiled our test client)

We can run our test client with the following command:
java -cp .;jboss\client\jbossall-client.jar;HelloWorldInterface.jar
test.HelloWorldTestClient

Running the test client will cause the message "Hello World!" to be printed:

Should we change something in the implementation of our HelloWorld EJB, the client would not
be affected. We can for example change the message returned by the business method hello() to
"Asta la vista, baby!" and run the client:

4.1.7 Learning by errors
J2EE servers and EJB development is complex, you are bound to run into some kind of problems
sooner or later. Once you master the theoretical foundation of component based development and
EJB most problems are easy to solve. An excellent way of learning the fundaments of EJB is to
learn from mistakes. To learn from mistakes, you have to focus not only on solving the problem,
but also dig deeper into the cause of the problem.
In this section we will introduce errors into the simple HelloWorld bean, your task is to explain
why the errors occurs/why not and when (not as easy as it seems).

Syntax errors

1. Make sure that the helloworld bean and its test client work as described in previous sections.
2. Introduce a syntax error into the Bean class, for instance just write “hgdgaj” into the code

somewhere.
3. Compile the bean (of course, this will give you a compiler error).
4. Run the testclient – It still works!, explain why!

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 16

Home interface error

5. Remove the introduced error, compile the bean to make sure the error is removed.
6. Introduce a error by changing the name of the home interface to HelloWorldHome2
7. Answer the following question: When will the introduced error be discovered?

a) when the bean is compiled
b) when the bean in packaged
c) when the bean is deployed
d) when running the test client
Also, explain what in the EJB design that makes you think that your answer will be the right
one.

8. Compile, package, deploy and run the bean to find out the right answer. Explain the behavior.

Remote interface error

9. Remove the introduced error.
10. Introduce a new error by changing the name of the remote interface to HelloWorld2.
11. Answer the same question as before, find out the right answer, explain it (why are the answer

not the same for this error and the previous one?).

Bean class error

12. Remove the introduced error.
13. Add a parameter to the method hello() in the bean class (for instance public String

hello(String name))
14. Answer the same question as before, find out the right answer, explain it.

Deployment descriptor error

15. Remove the introduced error.
16. Change the <ejb-name>HelloWorld</ejb-name> to <ejb-name>HelloWorld2</ejb-name>

in the deployment descriptor.
17. Answer the same question as before, find out the right answer by compiling, packaging,

deploying and testing the bean, explain the answer.

4.2 Database EJBs
Now that we have familiarized ourselves with JBoss and to the basic EJB structure, let's try to do
something that benefits from the use of EJBs.

In the sections that follow we will create two EJB components that work against the database
described in chapter 3. The first one will retrieve data (about books) from the database and the
second one will insert a new customer into the database. In order to transfer the data between the
client and the server we will need some data classes (so that we can send a book object instead of
just strings and other simple objects). In section 4.2.3 we will define those data classes that we will
later use when developing the EJBs and test clients. We will also need to configure our JBoss
server to access the database. We will do this in section 4.2.1 and 4.2.2.

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 17

It is also necessary to decide the package structure for our EJBs and data classes. We will use the
same root package as before (IS7) and under this we will create a new package bookdb. In this
package we will place our data classes and one sub-package for each EJB. We will place the test
client in the package test (as before).

4.2.1 Creating an ODBC Data Source
In order to connect to an MS Access database from a java program we need a driver. Since there is
no native java driver for MS Access we will use an ODBC driver. In order to make our database
available through an ODBC driver, we have to register it with the ODBC Data Source
Administrator that is part of Windows. To invoke the ODBC Data Source Administrator execute
the following file (for example through Start Run…):

C:\WINNT\system32\odbcad32.exe

This will bring you to the ODBC Data Source Administrator.

Create an ODBC alias (also known as DSN – Data Source Name) in the System DSN tab:

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 18

You can now give a name and a short description to your DSN and also select a database file to
associate to this DSN:

The new DSN should now be available under System DSN:

The database is now available through an ODBC driver and it is mapped to the alias bookIS7. In
the next section we will configure our JBoss connection pool for this ODBC data source.

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 19

4.2.2 Configuring JBoss connection pool
In this section we will define the database connection pool properties. These properties are stored in
the local jndi dictionary. This is done in an xml file that is then placed in the deploy directory of
JBoss! This xml is called msaccess-ds.xml and it must have a root element <datasources>.
This element can contain zero or more <local-tx-datasource> elements. We will need one such
element for our book database according to the following:
<local-tx-datasource>
 <jndi-name>jdbc/BookDB</jndi-name>
 <!-- format of URL is "jdbc:odbc:DSNNAME" -->
 <connection-url>jdbc:odbc:BookIS7</connection-url>
 <driver-class>sun.jdbc.odbc.JdbcOdbcDriver</driver-class>
 <user-name></user-name>
 <password></password>
 <min-pool-size>0</min-pool-size>
 <max-pool-size>5</max-pool-size>
</local-tx-datasource>

Download the file msaccess-ds.xml and place it in the directory
jboss\server\default\deploy. The file can be downloaded from here:

• \\DB-SRV-1\StudKursInfo\IS7 ht2003\CBDwithEJB\msaccess-ds.xml
• http://L238.dsv.su.se:86/courses/IS7/msaccess-ds.xml

It is important to check that the ODBC DSN alias is the same as the DSNNAME (the part after
jdbc:odbc:) in the <connection-url> element.

4.2.3 Data Classes
The database contains 8 tables, so we could think that we need 8 data classes. Since our EJBs are
only going to be using book objects and customer objects it is enough to create data classes for
those two types of objects.

Let's start with a data class for book objects called Book!
1. Create a new file Book.java (or download it) in the directory IS7\bookdb and open it for

editing!

2. Define the package: package IS7.bookdb;

3. Define the class: public class Book implements java.io.Serializable {}

Notice that it must implement the java.io.Serializable Interface in order for the instances to
be transmittable between the server and the client!

4. Define a private field for each interesting field/relation in the database:

private int booknr;
private String title;
private int price;
private int year;

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 20

Here we could create, for example, vectors of strings for the subjects or the author names, but
let's keep it simple. The four fields above will be enough in this exercise.

5. Define getters and setters for the four fields:

public int getBooknr() {return booknr;}
public String getTitle() {return title;}
public int getPrice() {return price;}
public int getYear() {return year;}
public void setBooknr(int value) {booknr = value;}
public void setTitle(String value) {title = value;}
public void setPrice(int value) {price = value;}
public void setYear(int value) {year = value;}

6. Define the following constructors:
public Book() {}
public Book(int booknr, String title, int price, int year)
{
 this.booknr=booknr;
 this.title=title;
 this.price=price;
 this.year=year;
}

7. Book.java is now complete. Compile it with the following command:

javac IS7\bookdb\Book.java

We can now create the other data class:
8. Create (or download it ready!) a new file Customer.java (in IS7\bookdb) and open it for editing!

9. Define its content according to the following:

package IS7.bookdb;

public class Customer implements java.io.Serializable
{

private int customernr;
private String name;
private String address;
private String city;
private String country;
//Here too, we could create a vector for Order objects, but we won't.

public int getCustomernr() {return customernr;}
public String getName() {return name;}
public String getAddress() {return address;}
public String getCity() {return city;}
public String getCountry() {return country;}
public void setCustomernr(int value) {customernr = value;}
public void setName(String value) {name = value;}
public void setAddress(String value) {address = value;}
public void setCity(String value) {city = value;}
public void setCountry(String value) {country = value;}

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 21

public Customer() {}
public Customer(int customernr, String name, String address, String city,
String country)
{
 this.customernr=customernr;
 this.name=name;
 this.address=address;
 this.city=city;
 this.country=country;
}

}

10. Customer.java is now complete and can be compiled with the following command:

javac IS7\bookdb\Customer.java

These two classes are now available for use in our EJBs and test clients.

4.2.4 Retrieving Data
In this section we will create an EJB that will provide business methods for retrieving books from
the database. Our EJB will return books given one of the following:
• nothing – return all books
• a subject – return all books about this subject
• a booknr – return the book with this booknr

In order to provide this functionality we will need to define 3 business methods (one for each type
of request).

We can start by creating the package (directory) where our EJB will be. We will call this package
bookmgr and the EJB BookMgr.

4.2.4.1 Bean class

1. Create a directory bookmgr (in IS7\bookdb)!

2. Create a new file BookMgrBean.java (in IS7\bookdb\bookmgr) and open it for editing!

3. Define the package: package IS7.bookdb.bookmgr;

4. Define all necessary imports:

import IS7.bookdb.Book;

We will probably have to add more imports here later. We will certainly need to import some
classes that are necessary for our business methods.

5. Define the class: public class BookMgrBean implements javax.ejb.SessionBean {}

6. Define an empty ejbCreate() method: public void ejbCreate() {}

7. Define the rest of the necessary methods:

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 22

public void ejbRemove() {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void setSessionContext(javax.ejb.SessionContext ctx) {}

We have now completed the standard parts of the session bean. We must now define our business
methods.

8. We can start by defining their signatures:

/*** Returns a vector of Books containing all the books
* @return null when something goes wrong
**/
public Vector getAllBooks()

/***Returns a vector of Books containing all the books about this subject
* @return null when something goes wrong
**/
public Vector getBooksBySubject(String subject)

/***Returns the Book for the given booknr
* @return null when something goes wrong
**/
public Book getBook(int booknr)

9. In order to use the class Vector without qualifying it every time we must add an import for it:

import java.util.Vector;

Before we start coding our business methods, let's take a look at the blueprint of our EJB:

Client
program

JBoss

BookMgr
EJB

Interface:
create()

getAllBooks()
getBook()

getBooksBySubject()

depl.
descr.

Book
Database

JDBC-ODBC

getAllBooks()

Vector

getBook()

Book

create()

BookMgr

Connecion
Pool

transaction
manager

Figure 3 BookMgr system outline

As we can see it is our EJB that contacts the database with any requests, but the connection to the
database and the transactions associated to our EJB are handled by the JBoss server. That means
that the EJB must request a database connection from the JBoss server and not directly from the

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 23

database. If we establish a connection directly to the database then any requests send on this
connection would not be visible to the transaction manager of the JBoss server.

We also know that all of the business methods need access to the database. In order to avoid
writing the same code (for requesting a connection from the connection pool) five times we can
create a private method in our session bean that the business methods can use.

We can start by defining this method and then implement the business method that will call it.

10. Define a private method getConnection():

private Connection getConnection()
{
 Connection con = null;
 try
 {
 Context jndiCntx = new InitialContext();
 DataSource ds = (javax.sql.DataSource)
 jndiCntx.lookup("java:/jdbc/BookDB");
 con = ds.getConnection();
 return con;
 }
 catch (SQLException ex)
 {
 ex.printStackTrace();
 System.err.println("getConnection failed." + ex.getMessage());
 }
 catch (NamingException e)
 {
 e.printStackTrace();
 System.err.println("lookup failed." + e.getMessage());
 }
 return null;
}

What we do is request a Context so that we can look up our database alias in the local
dictionary (managed by the JBoss server) through the Java Naming and Directory Interface
(jndi). From there we retrieve a DataSource which can provide us with the database connection
which in turn we return. The method also catches two possible exceptions.

11. In the method defined above we used a number of classes. We must therefore add import
statements for them:
import java.sql.*;
import javax.naming.Context;
import javax.naming.NamingException;
import javax.naming.InitialContext;
import javax.sql.DataSource;

We can import the entire java.sql package since we are going to use more classes included there
in our business methods.

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 24

We can now start defining one by one the business methods:

12. Define the implementation of the getAllBooks() method:

/*** Returns a vector of Books containing all the books
* @return null when something goes wrong
**/

 public Vector getAllBooks()
 {

Vector books = new Vector();
Connection con = getConnection();
if (con == null)
 return null;

String query = "SELECT * FROM Book";
try
{
 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(query);

while (rs.next())
{
 Book newbook = new Book(rs.getInt("booknr"),
rs.getString("title"), rs.getInt("price"), rs.getInt("year"));
 books.add(newbook);
}

 stmt.close();
 con.close();
}
catch (SQLException ex)
{
 ex.printStackTrace();
 System.err.println("Database error in getAllBooks() " +
ex.getMessage());
}
return books;

 }

13. Similarly we define the other two business methods:

/***Returns a vector of Books containing all the books about this subject
* @return null when something goes wrong
**/
public Vector getBooksBySubject(String subject)
{
 Vector books = new Vector();
 Connection con = getConnection();
 if (con == null)
 return null;

 String query = "SELECT * FROM Book WHERE booknr IN (SELECT booknr FROM
BookSubject bs, Subject s WHERE s.subjectnr = bs.subjectnr AND s.subject =
?)";
 try
 {
 PreparedStatement stmt = con.prepareStatement(query);

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 25

 stmt.setString(1, subject);

 ResultSet rs = stmt.executeQuery();

 while (rs.next())
 {
 Book newbook = new Book(rs.getInt("booknr"),
rs.getString("title"), rs.getInt("price"), rs.getInt("year"));
 books.add(newbook);
 }
 stmt.close();
 con.close();
 }
 catch (SQLException ex)
 {
 ex.printStackTrace();
 System.err.println("Database error in getBooksBySubject() " +
ex.getMessage());
 }
 return books;
}

/***Returns the Book for the given booknr
* @return null when something goes wrong
**/
public Book getBook(int booknr)
{
 Connection con = getConnection();
 if (con == null)
 return null;

 String query = "SELECT * FROM Book WHERE booknr = ?";
 try
 {
 PreparedStatement stmt = con.prepareStatement(query);

 stmt.setInt(1, booknr);

 ResultSet rs = stmt.executeQuery();

 Book thebook = null;

 if (rs.next())
 {
 thebook = new Book(rs.getInt("booknr"), rs.getString("title"),
rs.getInt("price"), rs.getInt("year"));
 }
 stmt.close();
 con.close();
 return thebook;
 }
 catch (SQLException ex)
 {
 ex.printStackTrace();
 System.err.println("Database error in getBook() " + ex.getMessage());

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 26

 }
 return null;
}

14. Our bean class is now complete and can be compiled with the following command (it must be
run from the M:\jdb042 directory and the Book class must have already been compiled):
javac IS7\bookdb\bookmgr\BookMgrBean.java -classpath
.;M:\jdb042\jboss\server\default\lib\jboss-j2ee.jar

We still have a lot to do:
• We must create the home interface
• We must create the remote interface
• We must create the ejb-jar.xml

Only then we can package our BookMgr EJB in a jar file and deploy it. The first three tasks are not
different from the HelloWorld EJB. Let's start by fixing the interfaces:

4.2.4.2 Home and remote interface

15. Create a file BookMgrHome.java (in IS7\bookdb\bookmgr) and open it for editing!

16. Define the package: package IS7.bookdb.bookmgr;

17. Define the interface: public interface BookMgrHome extends javax.ejb.EJBHome {}

18. Define the create() method:

BookMgr create() throws java.rmi.RemoteException, javax.ejb.CreateException;

19. Create a file BookMgr.java (in IS7\bookdb\bookmgr) and open it for editing!

20. Define the package: package IS7.bookdb.bookmgr;

21. Define the interface: public interface BookMgr extends javax.ejb.EJBObject {}

22. Define the interfaces of the business methods (adding a throws clause):

/***Returns a vector of Books containing all the books***/
public Vector getAllBooks() throws java.rmi.RemoteException;

/***Returns a vector of Books containing all the books about this
subject***/
public Vector getBooksBySubject(String subject) throws
java.rmi.RemoteException;

/***Returns the Book for the given booknr***/
public Book getBook(int booknr) throws java.rmi.RemoteException;

23. The signatures of the business methods refer to classes Vector and Book. These classes must

either be qualified or stated in an import statement. Add the following import statements:
import java.util.Vector;
import IS7.bookdb.Book;

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 27

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 28

24. Both interfaces are now complete and can be compiled with the following command (also
compiles the session bean class):
javac IS7\bookdb\bookmgr*.java -classpath
.;M:\jdb042\jboss\server\default\lib\jboss-j2ee.jar

4.2.4.3 Deployment descriptor

Next we can create the deployment descriptor:

25. Create a directory META-INF under IS7\bookdb\bookmgr!

26. Create a new file ejb-jar.xml (in the new META-INF directory) and open it for editing!

27. Define the contents of the deployment descriptor:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar
 PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
 'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>
<ejb-jar>
 <description>BookMgr EJB as part of the CBD with EJB compendium for IS7
ht2003</description>
 <display-name>Book Manager EJB</display-name>
 <enterprise-beans>
 <session>
 <ejb-name>BookMgr</ejb-name>
 <home>IS7.bookdb.bookmgr.BookMgrHome</home>
 <remote>IS7.bookdb.bookmgr.BookMgr</remote>
 <ejb-class>IS7.bookdb.bookmgr.BookMgrBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>BookMgr</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

4.2.4.4 Packaging and deployment

28. We can now also deploy the BookMgr EJB. We start by packaging everything in a jar file
BookMgrJAR.jar with the following commands:
jar cMvf BookMgrJAR.jar IS7\bookdb\Book.class IS7\bookdb\bookmgr*.class
jar uMvf BookMgrJAR.jar -C IS7\bookdb\bookmgr META-INF\ejb-jar.xml

29. We deploy our new jar file with the following command:

copy BookMgrJAR.jar jboss\server\default\deploy

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 29

30. We can also create a jar file BookMgrInterface.jar with the classes and interfaces needed by
the client developers. This jar file must therefore include the two interfaces and the Book class.
We can create this file with the following command:
jar cMvf BookMgrInterface.jar IS7\bookdb\Book.class
IS7\bookdb\bookmgr\BookMgrHome.class IS7\bookdb\bookmgr\BookMgr.class

We can once again change roles and assume the role of the client developer. We can now design a
little test client for the BookMgr EJB:

4.2.4.5 Test client

31. Create a new file BookMgrTestClient.java in the M:\jdb042\test directory! (The class
BookMgrTestClient will be in the package test.)

32. Open the file for editing!

33. Define the package: package test;

34. Import the necessary classes:

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import IS7.bookdb.bookmgr.*;
import IS7.bookdb.Book;
import java.util.Vector;
import java.io.BufferedReader;
import java.io.InputStreamReader;

35. Define the class: public class BookMgrTestClient {}

36. We only need a main() method, so we can start be defining it:

public static void main(String[] args) { }

37. Inside the main() method we will need to first establish a context in order to lookup the

BookMgr EJB (this is exactly the same we did in the HelloWorldTestClient):
try
{
 Context ctx = new InitialContext();
 ctx.addToEnvironment(Context.INITIAL_CONTEXT_FACTORY,
 "org.jnp.interfaces.NamingContextFactory");
 ctx.addToEnvironment(Context.PROVIDER_URL, "127.0.0.1:1099");
 //instead of 127.0.0.1 you can use localhost
 ctx.addToEnvironment("java.naming.factory.url.pkgs",
 "org.jboss.naming:org.jnp.interfaces");

 Object obj = ctx.lookup("BookMgr");
 BookMgrHome home = (BookMgrHome)
 PortableRemoteObject.narrow(obj, BookMgrHome.class);
 BookMgr bookMgr = home.create();

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 30

38. The only thing missing now is the call (or calls) to the business methods. We can for example
create a little loop that interacts with the user and the calls the appropriate business method of
the EJB. We can also create a couple of private function for printing the list of books on the
screen. Let's start by completing the main() method:
 BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
 String input;
 boolean stay = true;
 while (stay)
 {
 System.out.println("Choose one of the following options:");
 System.out.println("------------------------------------");
 System.out.println("1. Show all books!");
 System.out.println("2. Show books about a specific subject!");
 System.out.println("3. Show a specific book (by specifying
booknr)!");
 System.out.println("4. Exit!");
 System.out.println("------------------------------------");
 System.out.print("Enter your choice: ");
 input = br.readLine();
 switch ((new Integer(input)).intValue())
 {
 case 1:
 printBookList(bookMgr.getAllBooks());
 break;
 case 2:
 System.out.print("Enter a subject: ");
 String subject = br.readLine();
 printBookList(bookMgr.getBooksBySubject(subject));
 break;
 case 3:
 System.out.print("Enter a booknr: ");
 String temp = br.readLine();
 int booknr = (new Integer(temp)).intValue();
 printHeader();
 printBook(bookMgr.getBook(booknr));
 break;
 case 4:
 stay=false;
 break;
 }//end of switch
 }//end of while
} //end of try block
catch (Exception ex)
{
 System.err.println("Caught an unexpected exception!");
 ex.printStackTrace();
}//end of catch

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 31

39. We can now create the private methods printBookList(), printBook() and printHeader()
(The layout is not very good, but there is no reason why we should make it any better just for a
test client):
private static void printHeader()
{
 System.out.println("Booknr Title Price Year");
 System.out.println("---");
}

private static void printBook(Book book)
{
 if (book != null)
 {
 System.out.print(book.getBooknr()+"\t");
 System.out.print(book.getTitle()+"\t");
 System.out.print(book.getPrice()+"\t");
 System.out.println(book.getYear());
 }
}

private static void printBookList(Vector books)
{
 if (books != null)
 {
 printHeader();
 for (int i=0;i<books.size();i++)
 {
 printBook((Book) books.elementAt(i));
 }
 }
}

40. We are now ready to compile and run our test client. We can compile our test client with the

following command:
javac test\BookMgrTestClient.java -classpath jboss\client\jbossall-
client.jar;BookMgrInterface.jar

41. We can run our test client with the following command:
java -cp .;jboss\client\jbossall-client.jar;BookMgrInterface.jar
test.BookMgrTestClient

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 32

Here is an example of the test client in action:

4.2.5 Manipulating Data
So far we have worked with only retrieving data from the database. In this section we will make an
EJB that updates the database. The EJB will provide the clients with one business method for
inserting a new customer into the table Customer. The business method will take one argument (a
Customer object) and insert the values in the database. If something is incorrect with/in the
received Customer object it will throw an exception CustomerMgrException.

This EJB will be called CustomerMgr and it will be in the IS7.bookdb.customermgr package. We
will need the data class IS7.bookdb.Customer (that we created earlier) and the exception class
CustomerMgrException which we will create and place in the package
IS7.bookdb.customermgr.

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 33

Most of the EJB structure is the same as the previous one. The only thing that differs is the business
method and its implementation. We also have to create a new exception class. We can start with
just that:

1. Create the file CustomerMgrException.java in the package IS7.bookdb.customermgr and

add the following content:
package IS7.bookdb.customermgr;

/*** Exception to be thrown by CustomerMgr ***/
public class CustomerMgrException extends javax.ejb.EJBException {

 public CustomerMgrException () { }

 public CustomerMgrException (String msg) {
 super(msg);
 }
}

We inherit EJBException (instead of just Exception) so that the current transaction will be
automatically rolled back if something goes wrong.

The exception class is ready, so continue with the session bean:

4.2.5.1 Bean class
2. Create the session bean file (CustomerMgrBean.java) and add the standard session bean

content:
package IS7.bookdb.customermgr;

public class CustomerMgrBean implements javax.ejb.SessionBean
{
 public void ejbCreate() {}
 public void ejbRemove() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}
 public void setSessionContext(javax.ejb.SessionContext ctx) {}
}

3. We can also add a private method for retrieving a database connection (-the same private
method we had in BookMgrBean.java-):
private Connection getConnection()
{
 Connection con = null;
 try
 {
 Context jndiCntx = new InitialContext();
 DataSource ds = (javax.sql.DataSource)
 jndiCntx.lookup("java:/jdbc/BookDB");
 con = ds.getConnection();
 return con;
 }
 catch (SQLException ex)
 {

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 34

 ex.printStackTrace();
 System.err.println("getConnection failed." + ex.getMessage());
 }
 catch (NamingException e)
 {
 e.printStackTrace();
 System.err.println("lookup failed." + e.getMessage());
 }
 return null;
}

4. The only thing missing is the business method that can be defined as follows:

public void insertCustomer(Customer customer) throws CustomerMgrException
{
 if (customer == null)
 throw new CustomerMgrException("Insert failed: A customer must be
specified!");
 if (customer.getName() == null)
 throw new CustomerMgrException("Insert failed: A customer must have a
name!");
 Connection con = getConnection();
 if (con == null)
 throw new CustomerMgrException("Insert failed: No connection to
database available!");

 String name = customer.getName();
 String address = "";
 if (customer.getAddress() != null)
 address = customer.getAddress();
 String city = "";
 if (customer.getCity() != null)
 city = customer.getCity();
 String country = "";
 if (customer.getCountry() != null)
 country = customer.getCountry();

 String query = "INSERT INTO Customer (name, address, city, country)
VALUES (?, ?, ?, ?)";
 try
 {
 PreparedStatement stmt = con.prepareStatement(query);

 stmt.setString(1, name);
 stmt.setString(2, address);
 stmt.setString(3, city);
 stmt.setString(4, country);
 stmt.executeUpdate();
 stmt.close();
 con.close();
 }
 catch (SQLException ex)
 {
 ex.printStackTrace();
 System.err.println("Database error in getBook() " + ex.getMessage());

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 35

 throw new CustomerMgrException("Insert failed: Database said: " +
ex.getMessage());
 }
}

5. These methods use some classes that must be defined in import statements:

import IS7.bookdb.Customer;
import java.sql.*;
import javax.naming.Context;
import javax.naming.NamingException;
import javax.naming.InitialContext;
import javax.sql.DataSource;

4.2.5.2 Home and remote interface

6. We can quickly define the two interfaces:
Remote interface CustomerMgr:
package IS7.bookdb.customermgr;

import IS7.bookdb.Customer;

public interface CustomerMgr extends javax.ejb.EJBObject
{
 /*** Inserts a new customer in the database ***/
 public void insertCustomer(Customer customer) throws
java.rmi.RemoteException, CustomerMgrException;
}

Home interface CustomerMgrHome:
package IS7.bookdb.customermgr;

public interface CustomerMgrHome extends javax.ejb.EJBHome
{
 CustomerMgr create() throws java.rmi.RemoteException,
javax.ejb.CreateException;
}

4.2.5.3 Deployment descriptor

7. We can also create a deployment descriptor ejb-jar.xml (in a META-INF directory)With the
following content:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar
 PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
 'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>
<ejb-jar>
 <description>CustomerMgr EJB as part of the CBD with EJB compendium for
IS7 ht2003</description>
 <display-name>Customer Manager EJB</display-name>
 <enterprise-beans>
 <session>
 <ejb-name>CustomerMgr</ejb-name>
 <home>IS7.bookdb.customermgr.CustomerMgrHome</home>
 <remote>IS7.bookdb.customermgr.CustomerMgr</remote>
 <ejb-class>IS7.bookdb.customermgr.CustomerMgrBean</ejb-class>

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 36

 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>CustomerMgr</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

4.2.5.4 Packaging and deployment

8. We can now compile, package and deploy the CustomerMgr EJB with the following
commands:
javac IS7\bookdb\customermgr*.java -classpath
.;M:\jdb042\jboss\server\default\lib\jboss-j2ee.jar
jar cMvf CustomerMgrJAR.jar IS7\bookdb\Customer.class
IS7\bookdb\customermgr*.class
jar uMvf CustomerMgrJAR.jar -C IS7\bookdb\customermgr META-INF\ejb-jar.xml
copy CustomerMgrJAR.jar jboss\server\default\deploy

9. We can also create ajar file for the client developers with the following command:
jar cMvf CustomerMgrInterface.jar IS7\bookdb\Customer.class
IS7\bookdb\customermgr\CustomerMgrHome.class
IS7\bookdb\customermgr\CustomerMgr.class

4.2.5.5 Test client

10. The EJB is now deployed. We need a test client to test our business method! Here is a simple
test client (test.CustomerMgrTestClient):
package test;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;
import IS7.bookdb.customermgr.*;
import IS7.bookdb.Customer;
import java.io.BufferedReader;
import java.io.InputStreamReader;

public class CustomerMgrTestClient
{
 public static void main(String[] args)
 {
 try
 {
 Context ctx = new InitialContext();
 ctx.addToEnvironment(Context.INITIAL_CONTEXT_FACTORY,
"org.jnp.interfaces.NamingContextFactory");
 ctx.addToEnvironment(Context.PROVIDER_URL, "127.0.0.1:1099");

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 37

 ctx.addToEnvironment("java.naming.factory.url.pkgs",
"org.jboss.naming:org.jnp.interfaces");
 Object obj = ctx.lookup("CustomerMgr");
 CustomerMgrHome home = (CustomerMgrHome)
PortableRemoteObject.narrow(obj, CustomerMgrHome.class);
 CustomerMgr customerMgr = home.create();

 BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
 System.out.println("This will add a new customer. Provide the
information required!");
 System.out.println("--
-------------------");
 System.out.print("Name: ");
 String name = br.readLine();
 System.out.print("Address: ");
 String address = br.readLine();
 System.out.print("City: ");
 String city = br.readLine();
 System.out.print("Country: ");
 String country = br.readLine();
 customerMgr.insertCustomer(new Customer(0, name, address, city,
country));
 } //end of try block
 catch (CustomerMgrException ex)
 {
 System.out.println(ex.getMessage());
 }//end of catch
 catch (Exception ex)
 {
 System.err.println("Caught an unexpected exception :" + ex);
 ex.printStackTrace();
 }//end of catch
 System.out.println("New customer inserted into database
successfully!");
 }//end of main
}

11. We compile and run our test client with the following commands:

javac test\CustomerMgrTestClient.java -classpath
.;M:\jdb042\jboss\client\jbossall-client.jar;CustomerMgrInterface.jar
java -cp .;M:\jdb042\jboss\client\jbossall-client.jar;
CustomerMgrInterface.jar test.CustomerMgrTestClient

Here is an example of our test client in action:

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 38

5 Assignments
One of the assignments in this section is compulsory and must be presented for either nikos
dimitrakas or Martin Henkel in order to acquire a pass grade for the practical part of the course.
You may, of course, complete more than one of the assignments, but only one is required. Choose
one of the following four assignments!

Assignments:
1. Create an EJB and a test client for adding and retrieving subjects (two business methods)!
2. Create an EJB and a test client for retrieving authors! Two business methods should be

available:
• Get all authors
• Get all authors for a particular book (booknr)

3. Create an EJB and a test client for adding authors to the database!
4. Modify the CustomerMgr EJB so that it also provides business methods for the following:

• Retrieve all the customers that have ordered a particular book (given a book title).
• Retrieve all the customers that have ordered books for more than a particular total price.
Modify also the test client (or write a new test client) to test the new business methods!

It is of course possible to combine many EJBs in one client and provide a more complete
functionality for our database.

6 When things have gone bad!
Luckily all the files for the exercises in this compendium and the JBoss server are available to
download. Should you, by mistake, delete or change files, you can quickly restore the JBoss server
and exercise files. Should the JBoss server crash (-has not happened during the development of this
compendium-), it is enough to close command prompt window where it is running. This will force
Windows to kill the JBoss process. If it still won't go away, one can always reboot windows!

7 Internet Resources
The most important site is http://java.sun.com/ where there are tutorials and documentation for all
java frameworks.

Java: http://java.sun.com/
J2EE: http://java.sun.com/j2ee/
J2EE Tutorial: http://java.sun.com/j2ee/tutorial/
J2EE v1.4 API Documentation: http://java.sun.com/j2ee/1.4/docs/api/index.html
Java Basics Tutorial: http://java.sun.com/docs/books/tutorial/
JDBC Tutorial: http://java.sun.com/docs/books/tutorial/jdbc/index.html

Department of Computer CBD with EJB Lab Stockholm
and Systems Sciences IS7/2I1404 autumn 2003 July 2003
SU/KTH nikos dimitrakas

 39

8 Epilogue
When all this is done, you should have a fair understanding of the EJB framework. This
compendium only covered a part of the EJB framework (session beans), but hopefully this is
enough for illustrating the advantages of component based development and the Enterprise
JavaBeans framework.

I hope you have enjoyed this compendium.

The Author

nikos dimitrakas

