

Introduction to
Borland JBuilder™ 2.00 Client/Server Suite

With DataGateway Enterprise

Simple exercises – examples

Institution för Data- och systemvetenskap

Stockholms Universitet – KTH

nikos dimitrakas

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 2

Table of Contents
1 INTRODUCTION...3

2 JBUILDER’S INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)...3

2.1 STARTING JBUILDER ..3
2.2 THE MAIN WINDOW ..3

2.2.1 The menu bar ...4
2.3 THE APPBROWSER ...5

2.3.1 The Content pane...6
2.3.2 The Navigation pane..7
2.3.3 The Structure pane...7
2.3.4 AppBrowser modes ..8
2.3.5 Drilling down into other classes and interfaces ..9
2.3.6 Browse Symbol at Cursor ..10
2.3.7 Removing tabs from the AppBrowser ..10

2.4 THE OBJECT GALLERY ...10
2.5 WIZARDS..12
2.6 USING THE HELP VIEWER...12

3 CREATING AND MANAGING PROJECTS..13

3.1 WHAT IS A PROJECT? ..13
3.2 DISPLAYING A PROJECT ..13
3.3 CREATING A NEW PROJECT ...14

3.3.1 Creating a new project with the Project Wizard..14
3.4 OPENING AN EXISTING PROJECT ...14

4 BASIC EXERCISES...15

4.1 USING SIMPLE GUI CONTROLS ...15
4.2 USING ADDITIONAL CONTROLS...24
4.3 USING CONTAINERS AND LAYOUTS...27

4.3.1 Further practice...33
4.4 USING DIALOGS AND MENUS ...33
4.5 WORKING WITH FRAMES..40

4.5.1 Further practice...42

5 INTRODUCTION TO DATAGATEWAY...42

6 DATABASE EXERCISES ...42

6.1 MAKING A DATABASE AVAILABLE ...43
6.1.1 Through DataGateway ..43
6.1.2 Through ODBC..44

6.2 SHOW AND UPDATE A SINGLE TABLE ..44
6.3 MASTER-DETAIL ..49
6.4 FILTERING DATA - CALCULATED FIELDS ...52
6.5 USING PARAMETERIZED QUERIES ...55

7 EPILOG ...57

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 3

1 Introduction
This compendium is designed for people that have prior knowledge of programming and Java.
It does not require on the other hand knowledge of Rapid Application Development (RAD)
tools. This compendium is not covering JBuilder to the full extend. The goal is to introduce to
the reader to basic concepts of Rapid Application Development, make the reader familiar with
working in an Integrated Development Environment, and even to present basic features of
JBuilder as well as database development possibilities that JBuilder offers1. In addition to all
that we will briefly present how to create applets with JBuilder.

2 JBuilder’s Integrated Development Environment (IDE)
This chapter introduces you to the JBuilder integrated development environment (IDE).

This chapter provides you with overviews of:
• Starting JBuilder

Describes what you see when you open JBuilder.
• The main window

Describes the parts of JBuilder's main window, including the menu bar, the toolbar, and
the Component Palette.

• The AppBrowser
Describes the AppBrowser and the AppBrowser modes, including the Project Browser
mode, the Opened Files Browser mode, and the Directory Browser mode. Describes the
AppBrowser's Navigation pane, Content pane, and Structure pane. Explains how to
navigate your .java file and drill down into ancestor classes.

• The Object Gallery
Describes the Object Gallery, a repository of shortcuts that create skeletal instances of
many objects.

• Wizards
Provides a brief description what each wizard accomplishes.

• Using Help
Describes the JBuilder Help Viewer and the different ways to search in the help files

2.1 Starting JBuilder
When you first open JBuilder, you see JBuilder's main window and AppBrowser.

2.2 The main window
The main window is at the top of the screen when you open JBuilder. It contains the menu
bar, the toolbar and the Component Palette.

1 JBuilder can work with databases in different ways. ODBC is the standard driver that is
normally available, but it gives limited possibilities. DataGateway is a collection of JDBC
drivers that allow Java applications (and applets) to access databases of various types. In this
compendium DataGateway is presented briefly in order to establish the database connections
needed for the exercises.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 4

• The menu bar is where you choose menu commands.

• The toolbar displays buttons that are shortcuts for commonly performed tasks. Place the
mouse pointer over a toolbar button, without clicking, to see a description of what the
button does.

• The Component Palette displays components available in the JBuilder’s component

library. See Components delivered on the Palette for more information.

• The status bar displays compilation progress and file save messages.

2.2.1 The menu bar
The menu bar is at the top of the main window. You can select a menu command, then press
F1 to display context-sensitive help for that command.

The following table provides brief descriptions of menu commands.

Menu Commands for...
File menu Creating, opening, closing, renaming and saving files and projects;

removing files from projects; configuring printers; printing files.
Edit menu Copying, pasting, deleting and selecting text; undoing and redoing actions.
Search menu Finding and replacing text; searching for text incrementally and by line

number; searching for text across a source path; searching for a symbol.
View menu

Viewing Debugger windows, a new AppBrowser, the next or previous error
message, the toolbar, the Component Palette, or other currently open
AppBrowsers.

Build menu Making or building the selected node.
Run menu Running the application or applet; stepping over or tracing into code;

running to the end of a selected method; pausing the program; setting
watches or breakpoints; inspecting, evaluating and modifying.

Wizards menu Running utility wizards for tasks such as implementing an interface,
overriding a method, bundling resources, and wrapping an applet.

Tools menu Displaying the Environment Options dialog; invoking the Windows
Notepad and Calculator; invoking remote object creation tools; and opening
database tools.

Workgroup menu Setting up version control and managing workflow.
Help menu

Displaying documentation, such as the Help system, the BeansExpress
tutorial, the JDK API Reference, and the JBCL Reference. Also for viewing
the Inprise Online web site in your default web browser, loading the
Welcome project for experimenting, and seeing information about this

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 5

release of JBuilder.

2.3 The AppBrowser
JBuilder is structured to increase your productivity as a Java developer. Because Java projects
use many files, and because the various development tasks (such as editing, debugging, and
browsing for information) have traditionally used multiple windows, it can be difficult to find
the window you need.

To simplify your job, JBuilder introduces a new concept in user interfaces for development
environments: a single AppBrowser that is used to perform all the usual development
functions. The JBuilder AppBrowser lets you to explore, edit, design, and debug all in one
unified window.

The JBuilder AppBrowser usually fills the screen area below the main window. If you are
running JBuilder, and don't have an AppBrowser displayed, choose Help|Welcome Project
now to view it.

The AppBrowser usually contains three panes:
• The Navigation pane, on the upper left
• The Content pane, on the right side
• The Structure pane on the bottom left
• The Inspector on the right, visible only in specific modes.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 6

Although you will usually have only one AppBrowser visible, you can open additional
AppBrowsers as needed, for example, to view more than one project at a time. Use
View|Windows to switch between AppBrowsers.

2.3.1 The Content pane
The Content pane displays the detailed content of the file selected in the Navigation pane. The
editor or viewer used is determined by the file's extension.

File Type Editor(s) or Viewer(s) available in the Content pane
Text files

If you select a text file in the Navigation pane (a file with an extension such as .txt
or .bat), a single editor, identified by the Source tab, is available in the Content
pane.

Image files If you select a .GIF, .JPG, or .BMP image file in the Navigation pane, an image
viewer, identified by the View tab, is available in the Content pane.

HTML files

If you select an HTML file in the Navigation pane, two tabs are displayed at the
bottom of the Content pane, labeled View and Source.

View tab

The View tab selects an HTML viewer. This viewer lets you to see
the rendered HTML file, as you would see it in a web browser.

Source tab
The Source tab selects an Editor that lets you see and edit the file as
raw HTML source.

.java files

If you select a .java file in the Navigation pane, you will see three tabs labeled
Source, Doc, and Design.

Source tab

If you select the Source tab when viewing a .java file, you will see
the JBuilder Java Source Code Editor. This is a full-featured, syntax-
highlighted programming editor.

Doc tab
If you select the Doc tab when viewing a .java file, you will see the
corresponding reference doc for that .java file, if there is one.

Design tab
If you select the Design tab when viewing a .java file, you will see
the JBuilder visual design tools for that class. For example, if you
select the WelcomeFrame.java class in the Welcome project (or a
Frame class in your own project), you will see the Jbuilder UI
Designer in the Content pane.

Bean tab
When you select the Bean tab, you see the BeansExpress designers.
The Bean tab exposes the BeansExpress Property, Event, BeanInfo,
and Property Editor designers. Use them to add properties and events
to your bean, choose what properties are exposed, and create custom
property editors.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 7

You can expand the Content pane to fill the entire AppBrowser window. You simply toggle it
in and out of full window mode with the View|Toggle Curtain menu
command. You can also use the mouse to resize the window or any
of its panes by dragging the pane boundaries.
Note that when you activate the design tab of the content pane, the
Inspector appears on the right side of the content pane. The
Inspector shows common properties and events for the selected bean
(component). It is also possible to mark two or more components at
once, then the Inspector shows only the common properties for the
marked components.
Some properties can be changed manually (When changing
properties on the Inspector, it is recommendable to use the Enter
key. Not using the Enter key may sometimes lead to inconsistencies
between the code and what is shown on the Inspector.), while others
can be changed only by JBuilder itself.
On the events tab things work differently. First you have to click
once on the event you want to edit.

Then you can either write the name of the event handler you want to call when that event
occurs, or double click on the field to the right of the event name. When you’ve done that the
source tab of the content pane is activated and a method header is created. The name of this
method is automatically entered in the event handler field of the chosen event. In this method
you can write your Java code to be executed when this event occurs.

2.3.2 The Navigation pane
The Navigation pane is the top left pane of the AppBrowser. This pane shows a list of one or
more files. In the case of the Project Browser, you will see the project (.jpr) file first. Attached
to that is a list of the files in the project. The list may include .java, .html, text, or image files.

You can select a file in the Navigation pane by clicking it. The Content pane and the Structure
pane display information about the selected file. As you select different files in the Navigation
pane, each one will be represented in the Content and Structure panes.

2.3.3 The Structure pane
The lower left pane of the AppBrowser shows you a structural analysis of the file that you
have selected in the Navigation pane.

For example, if you select a .java file, the Structure pane will show you structural information
about the java code in that file, such as
• Imported packages.
• The classes and/or interfaces in the file.
• Any ancestor classes and/or interfaces.
• Variables and methods.

This structural analysis is in the form of a hierarchical tree. You can think of the Structure
pane as a table of contents for the file.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 8

2.3.3.1 Navigating .java files using the Structure pane
Not only does the Structure pane show you the structure of your file, you can also use it as a
quick navigation tool to the various structural elements in the file. For example, if you have
selected a .java file, you see classes, variables, and methods in the Structure pane. You can
then click on any of those elements in the Structure pane and the Content pane will move to
and highlight that element in the source code. You can also use the Structure pane for drilling
down into other ancestor classes and interfaces.

2.3.3.2 The Component Tree
When you have selected a .java file and then select the Design tab at the bottom of the
Content pane, the Structure pane will display the designable objects in the file, and how they
are nested and interrelated. This view is called the Component Tree. For more information,
see Using the Component Tree.

2.3.4 AppBrowser modes
The AppBrowser has two sets of tabs to control the type of view you see. One set is at the
bottom of the Structure pane and the other set is at the bottom of the Content pane. Different
tabs appear, depending on what you are doing.

• The tabs below the Structure pane control which mode the browser is in (what kind of

browser it is). Examples are Project Browser mode (Project tab), Opened Files Browser
mode (Opened tab), and Directory Browser mode (Directory tab).

• The tabs below the Content pane control the kind of viewer or editor used in the Content

pane. Examples are the Editor (Source tab), the UI Designer (Design tab), and
Documentation Viewer (Doc tab). Other available viewing modes of the Content pane are
HTML Browser (View tab) and Image Viewer (Viewer tab).

The browser as a whole is called the AppBrowser. When you switch the AppBrowser into a
different mode, such as Project mode, you can think of it as the Project Browser.

The AppBrowser can display the following modes:
• Project Browser
• Directory Browser
• Opened Files Browser
• Debugger
• Class Hierarchy Browser
• Search Results Browser

To return to the starting state and see your code, click the Project tab, then the Home button.

2.3.4.1 Project Browser
The Project Browser mode of the AppBrowser manipulates files in a project. To put the
AppBrowser into Project Browser mode, choose the Project tab on the lower left tabset, below
the Structure pane. In this mode, the Navigation pane shows the project (.jpr) file and a list of
the files in that project.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 9

If you find a file you want to open, select it in the Navigation pane. File details are displayed
in the Content pane and file structure is displayed in the Structure pane.

2.3.4.2 Directory Browser
If you select the Directory tab below the Structure pane, you will switch the AppBrowser
from browsing your project to browsing your file system directory. In this mode, you can
browse through directories to locate files.

If you find a file you want to open, select it in the Navigation pane. File details are displayed
in the Content pane. File structure is displayed in the Structure pane just as if it were a file in
your project.

You can quickly add a file to your project from the Directory Browser by clicking it and
dragging it to the Project tab.

2.3.4.3 Opened Files Browser
The Opened tab gives you a list of your currently active or open files. Your open files are
• Files you have edited in this AppBrowser session.
• Files you have explicitly dropped onto the Opened tab from the Directory or Project tabs.

2.3.4.4 Debugger
When you run the JBuilder Debugger, it will add two more tabs to the AppBrowser, Debug
and Watch. The Debug tab displays the main Debugger view and the Watch tab displays the
Watch view.

While debugging, you can switch to any of the other tabs to review files in your project,
browse directories, and look up reference information without disturbing your debugging
session or cluttering your screen.

2.3.4.5 Class Hierarchy Browser
To see the class hierarchy for a particular .java file, select it in the Navigation pane, right-
click, and from the popup menu choose Class Hierarchy. This will add a new AppBrowser tab
for Class Hierarchy viewing. When you click on this tab, the Navigation pane will show you
the inheritance tree for your file. You can then navigate to any file in the inheritance tree by
selecting it in the Navigation pane.

2.3.4.6 Search Results Browser
If you use Search|Search Source Path to look for a search string across directories, JBuilder
adds a Search Results tab to the AppBrowser. When you click this tab, you will see a list of
the file(s) that contain the selected text.

2.3.5 Drilling down into other classes and interfaces
Often you will need to look at .java files that are not part of your project, but which are
referred to in the class you are editing. This might be an ancestor class or the class of some
instance variable.

There are several traditional ways you can navigate to the file you need. If you know its full
package and class name, you can

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 10

• Open it in a separate browser (File|Open/Create)
• Browse for it using Search|Browse Symbol
• Use the Directory Browser to look for it on the disk

With the Structure pane, JBuilder provides a much faster way. To see the .java file for an
ancestor class, an interface, or the type of a variable shown in the Structure pane, just double-
click it. The AppBrowser will go to that file, showing it in all three panes.

Follow these steps for an example of drilling down:
• Use Help|Welcome Project to open the Welcome Project.
• Select WelcomeFrame.java in the Navigation pane.
• In the Structure pane, note that WelcomeFrame extends DecoratedFrame.
• Double-click DecoratedFrame in the Structure pane.
• The AppBrowser will show you DecoratedFrame.
• Double-click Frame to drill down another level into the Frame parent class of

DecoratedFrame. Note that you can not only see the source of the Frame class, but you
can also click on the Doc tab and read the reference doc for the class as well.

• If you navigate to a file for which no source code is found, JBuilder will synthesize a
temporary source file to show in the Source pane. This temporary file contains method
stubs for the public methods.

2.3.6 Browse Symbol at Cursor
In addition to drilling down into ancestor or variable classes in the Structure pane, you can
also use the popup menu in the Source view of a .java file to browse to a symbol in the source.
• Place your cursor on the symbol (interface or class name) in the source.
• Right-click.
• Choose Browse Symbol at Cursor.
• JBuilder will locate the file for that Java class or interface and show it in the AppBrowser.

2.3.7 Removing tabs from the AppBrowser
To remove a tab, such as Search Results or Class Hierarchy, that has been added to the
AppBrowser,
• Right-click it.
• Choose the Drop command for the name of the tab you want to drop.
• JBuilder removes the tab.

2.4 The Object Gallery
The Object Gallery contains shortcuts that create skeletal instances of many objects. To
display the Object Gallery, choose File|New.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 11

To use a shortcut or template, click the icon. JBuilder creates the skeletal code in a .java file
and adds the file to your project.

• The New page contains shortcuts for creating applications, applets, projects, frames,

dialogs, panels, data modules, classes and HTML files.
• The Panels page contains shortcuts for creating

 A tabbed Pages panel, a multi-paged dialog box with three tabbed pages
 A dual list box with a Source and Destination list

• The Menus page contains a shortcut for creating a standard menu, which includes a File,
Edit and Help menu. Each menu contains standard menu items.

• The Dialogs page contains shortcuts for creating:
 An About Box
 Two standard dialogs, each with a BevelPanel and an OK and Cancel button
 A Password dialog

• The DataModule page contains a shortcut for creating an employee database.
• The BeansExpress page contains shortcuts for creating JavaBeans.
• The VisiBroker page contains a shorcut for creating a CORBA server.
• The Other page contains a shortcut for creating an example snippet.

To add your own files to the Object Gallery:

• Select the page of the Object Gallery on which you want the file to appear.
• Right-click and choose Add Snippet.
• The Add Snippets dialog is displayed.
• In the Object Gallery description field, enter a brief description of the snippet.
• Specify the name of the snippet file.
• Specify the name of the image to display in the Object Gallery and click OK.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 12

2.5 Wizards
To guide you through the major tasks necessary to create Java programs, JBuilder comes
equipped with wizards. These are tools that guide you through the necessary steps for a
specific function or task.

There are three types of wizards:
• File wizards are wizards that create new files. These wizards are available in the Object

Gallery.
• Utility wizards modify existing files and are available on the Wizards menu.
• Remote Objects wizards are found on the Tools and Wizards menus and in the Object

Gallery.

Example:
New Frame Wizard - creates a new frame:

2.6 Using the Help Viewer
The Help Viewer provides access to various books with helpful information and examples
about:
 JBuilder
 Java
 DataGateway
 InterClient
 Other useful topics concerning development with JBuilder

The Help Viewer is very much like the AppBrowser. There is the navigation pane, the content
pane and some navigation buttons. The navigation pane has three modes (tabs):
• Contents This option allows you to see the contents of the book selected in the

“available books” drop down list. Clicking on a chapter in the navigation pane
shows this chapter in the content pane of the viewer.

• Book Index Here you can search for a particular title in a specific book.
• Master Index Here you can search for a particular title in all the books at once.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 13

You can at all times search for a certain word, by clicking on the search icon, but this searches
only in the currently shown document.
By using the next and previous buttons you can easily go back and forth among the different
topics that you have visited.

3 Creating and managing projects
To develop programs in the JBuilder environment, you must first create a project.

3.1 What is a project?
In its simplest form, a project is just a holder of files. Generally, a project is used to "hold" the
files that together make up a JBuilder application or applet. These files can be in any
directory. The project ties them all together.
The information about each JBuilder project is stored in a project file that has a .jpr file
extension. This project file contains a list of all the files in the project and the project settings
and properties. JBuilder uses the information in the project file when you load, save or build a
project and sometimes when you use a wizard. You don't edit a project file directly, but it is
modified whenever you use the JBuilder development environment to add and remove files
and set project options. You can see the project file as a node at the top of the project tree in
the Navigation pane of the AppBrowser.

3.2 Displaying a project
JBuilder displays each project within its own AppBrowser. Therefore, if you have more than
one project open, JBuilder opens an AppBrowser for each.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 14

3.3 Creating a new project
JBuilder gives you several ways for starting a new project. The method you choose to begin a
project depends on what your intended goal is for the project.

You might want to start a new project by creating only the project file and adding files later.
Or if you intend to design an application or applet, you can use one of JBuilder's wizards to
automatically generate the framework for your application or applet. The wizard
automatically generates a project file and imports the basic files if no other project is already
open.

3.3.1 Creating a new project with the Project Wizard
JBuilder provides the Project Wizard to assist in creating a new project. The Project Wizard
automatically sets up the framework for the project and gives you the opportunity to enter
informative data about the project such as its location on disk, the author of the project, and a
description.

The Application and Applet Wizards both have a shortcut to the Project Wizard. If either one
of those wizards is launched when a project is not open, the Project Wizard will be launched
first and a new project will be created. Then, control returns to the wizard that was first
invoked. The new application or applet will automatically be added to the newly created
project. (Of course, the Application and Applet Wizards can be run at any time during the
development of a project and the appropriate files will be added to the project).

To create a new project with the Project Wizard,
• Choose File|New Project... (or File|New… and then Project)
• The Project Wizard is displayed.
• Enter the name of the project file. Make sure the file extension is .jpr.
• Fill in the title, author, company, and description fields. These fields are optional.
• Click Finish when you're done.
• The new project is displayed in its own AppBrowser.

3.4 Opening an existing project
There are three ways to open an existing project. You can either use the File|Open/Create
dialog box, the File|Reopen menu command, or the Directory Browser.

To open a project using the File|Open/Create dialog box,
• Choose File|Open/Create to display the File Open/Create dialog box.
• In the Files of Type box, select Java Projects to display only JBuilder project files.
• Navigate to the directory that contains the file to be imported.
• Select the .jpr file you want to open.
• Choose Open.

To open a project with the File|Reopen command,
• Choose File|Reopen.A list of previously opened projects is displayed.
• Choose the project you want to open.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 15

To open a project using the Directory Browser,
• Choose the Directory tab. The Directory Browser appears in the AppBrowser.
• In the Directory Browser, double-click directories to navigate to the directory that holds

the project you want to open.
• Double-click the project file. An AppBrowser appears, displaying the new project node in

the Project Browser.

4 Basic exercises
The exercises that follow concentrate on common components that JBuilder provides. We will
notice that actions that have been done in an exercise are often not described in detail in a
later exercise. If you feel that you don’t know how to do something in one of the later
exercises, you can then go back to an earlier exercise, where this something was described in
detail.

4.1 Using simple GUI controls
This exercise concentrates mostly in using components found under the AWT (Abstract
Windowing Toolkit2) tab on the Component Palette. In this exercise we will create a simple
project. We will let the user create a list with items to do. The user will be able to add items to
and remove items from the list. To do that we need to create a project, add a frame to this
project, add a few GUI controls and implement some functionality to these controls by writing
some Java code. To do that, follow the following steps:

 Start JBuilder and close all open projects. (Only the main window should be visible)

 Start a new project

 When the Project wizard appears set the file field to:
Your home directory\JBuilder exercises\simpleproject\simpleproject.jpr
(You can also fill the other fields if you want)

2 The java.awt package contains components that are simple GUI controls such as
checkboxes, labels, radio buttons, and text boxes.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 16

 Click the finish button

A new AppBrowser appears:

 Choose File|New… from the menu bar

The Object Gallery is displayed

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 17

 Choose Application and click the OK button

The new Application Wizard appears

The package field contains by default the name of the .jpr file, namely simpleproject.

 Fill in the class name: MainApp

The File name is automatically filled by JBuilder

 Check the Generate header comments checkbox

 Click the Next button

The second window of the Application Wizard appears

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 18

 Fill in the Class field and Title field
class: MainFrame
tittle: Main Frame for Simple Project

 Press the Finish button

Two new files are now included to your project: MainFrame.java and MainApp.java

 Mark the MainFrame.java in the Navigation pane

 Activate the design tab in the Content pane

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 19

The Inspector is also visible now (on the right side of the AppBrowser)

 Activate the AWT tab in the Component Palette

 Add two Button components, a List component, a Textfield component and three Label
components to the Frame3

 Edit in the inspector the following properties of the components that you added4:

Component Property Value
label1 text Item to do:

3 You can add a component to the frame by first choosing the component you wish to add in
your frame on the Component Palette and then clicking on the frame once at the position you
want the component to be. After that you can easily resize the component.
4 You can choose the component that you want to edit the properties of, by either clicking on
it on the content pane (while in design state) or by choosing the component on the Structure
pane (while the design tab is activated in the content pane).

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 20

label2 text Items to do list:
label3 text Total items: 0
button1 label Add item to list
 name addButton
button2 label Delete marked item from the list
 name deleteButton
textField1 name itemTextfield
 text
list1 name itemList
 background White

The AppBrowser should now look something like this:

Now that the interface is ready we can start adding some functionality

Pressing the addButton should take the content of the itemTextField and add a new row in the
itemList. Once this will happen every time the addButton is pressed, it is the addButton’s
mouseClicked event we should work with.

 Activate the addButton and show the events tab on the Inspector

 Click once on the mouseClicked event to activate it

 Doubleclick on the empty field next to mouseClicked event

JBuilder swaps automatically to the Source tab in the content pane and it creates a new
method header

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 21

 Write the following code:

itemList.addItem(itemTextField.getText());

label3.setText(“Total Items: “ + itemList.getItemCount());

add a new item to the list, the new item has the
current text of the itemTextField.
update the third label so that it shows the correct
amount of items in the list.

The method should now look like this:

void addButton_mouseClicked(MouseEvent e) {
 itemList.addItem(itemTextField.getText());
 label3.setText(“Total Items: “ + itemList.getItemCount());
}

 Do the same with the deleteButton but write instead, the following code:

itemList.remove(itemList.getSelectedIndex())
label3.setText(“Total Items: “ + itemList.getItemCount());

remove from the list the item that is selected
update the third label so that it shows the correct
amount of items in the list.

The method should now look like this:

void deleteButton_mouseClicked(MouseEvent e) {
 itemList.remove(itemList.getSelectedIndex());
 label3.setText(“Total Items: “ + itemList.getItemCount());
}

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 22

As it is now, the user may add an item with no text or try to remove an item while no item is
selected. To avoid those cases we can enable and disable the add and delete buttons according
to the current status of the itemTextField and the itemList. We can start by making the default
status of both buttons to disabled. that can be done easily by selecting the buttons and
changing their enabled property on the Inspector to False.

The addButton should be enabled every time the text in the itemTextField is not empty (its
length is greater than 0), and disabled when the text is empty. The text of the itemTextField
can also be cleared after the addButton has been pressed.
To do that we can use the textValueChanged event of the itemTextield and the mouseClicked
event of the addButton.

 Add the following line to the textValueChanged event of the itemTextield:

if (itemTextField.getText().length()>0){
 addButton.setEnabled(true);
 }
 else {
 addButton.setEnabled(false);
 }

If the length of the text in the itemTextField is greater than 0
then enable the addButton

else
disable the addButton

The method should now look like this:

void itemTextField_textValueChanged(TextEvent e) {
 if (itemTextField.getText().length()>0){
 addButton.setEnabled(true);
 }
 else {
 addButton.setEnabled(false);
 }
 }

 Add the following line of code to the mouseClicked event of the addButton:

itemTextField.setText("") clear the text of the itemTextField

The method should now look like this:

void addButton_mouseClicked(MouseEvent e) {
 itemList.addItem(itemTextField.getText());
 label3.setText(“Total Items: “ + itemList.getItemCount());
 itemTextField.setText("");
}

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 23

Similarly the deleteButton should be enabled when an item on the list is selected and disabled
when no item is selected (or after the deleteButton has been pressed). To do that we can use
the itemStateChanged event of the itemList and the mouseClicked event of the deleteButton.

 Write the following code in the itemStateChanged event of the itemList:

if (itemList.getSelectedIndex()!=-1){
 deleteButton.setEnabled(true);
 }

If an item is selected in the itemList (-1 indicates no selected item)
then enable the deleteButton

 Add the following code to the mouseClicked event of the deleteButton:

deleteButton.setEnabled(false); disable the deleteButton

The entire method should now look like this:

void deleteButton_mouseClicked(MouseEvent e) {
 itemList.remove(itemList.getSelectedIndex());
 label3.setText("Total Items: " + itemList.getItemCount());
 deleteButton.setEnabled(false);
 }

 You can now save and run the application!

The only problem now is that both buttons are enabled by default when we start the
application. To change that we can use an event that occurs when the application starts. The
componentShown event of the mainFrame (“this”) is such an event.

 Add the following code to the componentShown event of the “this”:

addButton.setEnabled(false); disable the addButton
deleteButton.setEnabled(false); disable the deleteButton

The entire method should now look like this:

void this_componentShown(ComponentEvent e) {
 addButton.setEnabled(false);
 deleteButton.setEnabled(false);
}

 Save and run the application!

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 24

4.2 Using additional controls
In this exercise we will work with components from the KL Group tab, the AWT tab and the
JBCL tab5. We will play with colors and images…
The application will look like this when we are done:

In the upper half of the frame we experiment with colors. Adjusting red, green and blue with
the components on the left side affect the color shown on the right. In the lower half we have
an image which we can move in different directions and change the size of.

 Start JBuilder and close all open projects

 Create a new application according to the following:

 When the Project wizard appears set the file field to:
Your home directory\JBuilder exercises\exercise2\exercise2.jpr

 Press the finish button

 When the Application wizard appears set the class field to:
MainApp

 Press the next button

 Fill in the Class field and Title field (for the frame)

5 I had thought about using a tabManager component for this exercise but once they require
the use of containers and layouts we will wait until the next exercise.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 25

class: MainFrame
tittle: Main Frame for Simple Project

 Press the finish button

The AppBrowser appears

 Select the MainFrame.java and activate the design tab

 Add the following components to the upper half of the frame (you may need to resize the
frame):

component name components tab property name property value
label1 AWT text RED:
label2 AWT text GREEN:
label3 AWT text BLUE:
label4 AWT text Color Sample:
label5 AWT text (0,0,0)
jCSlider1 KL Group maximum 255
jCSlider2 KL Group maximum 255
jCSpinBox1 KL Group maximum 255
panel1 AWT

The upper part of the frame should now look like this:

When we start the application the color of the panel should be (0,0,0) (meaning black). To
initiate the panel to black we have to write the following line of code in a method that is going
to be executed before the frame is visible. The componentShown method of the frame (this) is
such.

 Select the frame and enter the componentShown event from the inspector

 Write the following code:

panel1.setBackground(new Color(0,0,0)) set the background color of the panel to black

Now we can write some code to connect the sliders and the spinBox to the panel’s color:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 26

The sliders have an adjustmentValueChanged event, the spinBox has a spinBoxChangeEnd
event.

 In those events write the following code:

panel1.setBackground(new Color(jCSlider1.getValue(),jCSlider2.getValue(),jCSpinBox1.getIntValue()));
label5.setText("("+jCSlider1.getValue()+","+jCSlider2.getValue()+","+jCSpinBox1.getIntValue()+")");

These lines update the color of the panel by gathering the values of the sliders and the
spinBox and creating the matching color. The label that shows the numbers that define the
color is also updated.

This half of the exercise is now finished. You can test the application by saving and running
it.

 Add the following components in the lower part of the frame:

component name components tab property name property value
label6 AWT text Move Image
label7 AWT text Resize Image
label8 AWT text Image:
jCArrowButton1 KL Group orientation RIGHT
jCArrowButton2 KL Group orientation UP
jCArrowButton3 KL Group orientation DOWN
jCArrowButton4 KL Group orientation LEFT
jCSlider3 KL Group maximum 100
 minimum 20
 value 50
checkbox1 AWT label Image visible
 state true
panel2 AWT layout XYLayout
transparentImage1 JBCL imageName C:\JBuilder\lib\image32\trimage.gif
 alignment HStretch+VStretch

Make sure to place the tranparentImage1 on the panel2. We do that in order to prevent the
image from moving over the entire frame. If the image is placed on a panel then it cannot
move outside the panel’s borders.

The lower part of the frame should now look like this:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 27

Now to add some functionality:

The checkbox1 has an event called itemStateChanged.

 Add to this event the following code:

transparentImage1.setVisible(checkbox1.getState()); set the visible property of the transparentImage1 to the

same as the checkbox1’s state property

 Add the following code to the adjustmentValueChanged event of the jCSlider3:

transparentImage1.setSize(jCSlider3.getValue(),jCSlider3.getValue()); set the size of the Image to current

value of the jCSlider

 Add to the jCArrowButtons’ mouseClicked events the following code:

transparentImage1.setLocation(transparentImage1.getLocation().x,transparentImage1.getLocation().y-1); UP
transparentImage1.setLocation(transparentImage1.getLocation().x,transparentImage1.getLocation().y+1); DOWN
transparentImage1.setLocation(transparentImage1.getLocation().x-1,transparentImage1.getLocation().y); LEFT
transparentImage1.setLocation(transparentImage1.getLocation().x+1,transparentImage1.getLocation().y); RIGHT

We simply get the location of the image, alter it and set it again

 Save and run the application

4.3 Using containers and layouts
A Container component is a component that contains other components. A container can by
used to group other components and to arrange them in such way so that their layout can be
maintained when the size of the container is altered. In this exercise there is no functionality
implemented. This exercise consists of one frame which contains one tabSetPanel component
with 3 tabs. The first tab is designed with border layout and it looks like this:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 28

This tab contains a groupbox (which is also a container) which is using Grid layout.

The second tab is designed with pane layout and looks like this:

The third tab uses a splitPanel component, which is a container that uses pane layout. This tab
looks like this:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 29

In the previous exercise we used a frame that used XYlayout. If we resize that frame we get a
result that looks like this:

 or

But if we resize the frame of this exercise all the objects on the frame are resized and
repositioned. The result is like this:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 30

 or or

 Start by creating a new application

 Name the project Your home directory\JBuilder exercises\exercise3\exercise3.jpr
 Name the application MainApp
 Name the frame MainFrame

 Show the MainFrame on the design tab of the content pane

 Remove the bevelPanel that is automatically created on the frame

 Add a tabsetPanel to the frame

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 31

 Add a splitPanel and two bevelPanels to the tabsetPanel6

This should create three tabs on your tabsetPanel

When you have done that, your AppBrowser should look like this:

To change between tabs you can use the selectedIndex property of the tabsetPanel17 or select
the respective panel on the structure pane

 Activate the tab named bevelPanel1

 Select the bevelPanel1 component that rests on this tab

 Change the layout property of the bevelPanel1 to paneLayout

 Do likewise with bevelPanel2 and set its layout property to borderLayout

SplitPanel1 has no layout property! It is by default of paneLayout

On the bevelPanel1 add the following components:

6 To make sure that the panels are placed on the tabsetPanel and not on each other you can add
them to the tabsetPanel on the Structure Pane.
7 The first tab has index 0

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 32

component property value

list
jCArrowButton orientation DOWN
textField

To add a small gap between the components change the gap property of the paneLayout1 that
is directly after the bevelPanel1 on the Structure Pane

 Activate the bevelPanel2 tab and add to the bevelPanel2 four shapeControl components
and one groupBox component

 Set their properties to match the following:

component property value

shapeControl1 type NegSlopeLine
 foreground Cyan
 constraints South
shapeControl2 type Ellipse
 foreground blue
 constraints Center
shapeControl3 type RoundRenc
 foreground Magenta
 constraints East
shapeControl4 type Circle
 foreground Orange
 constraints West
groupBbox1 constraints North
 layout GridLayout

To change the gap between the components change the properties of the borderLayout1 that is
directly after the bevelPanel2 on the Structure Pane

 Add four checkboxes to the groupBox1:

component property value
checkbox1 label RoundRenc
 state true
checkbox2 label Circle
 state true
checkbox3 label Ellipse
 state true
checkbox4 label NegSlopeLine
 state true

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 33

You can change the way the checkboxes are placed within the groupBox1 by editing the
properties of the gridLayout1 that is directly after the groupBox1 on the Structure Pane

 Activate the splitPanel1 tab and add the following components to the splitPanel1:

component property value
textField
textArea
button label Add to text

Once the splitPanel1 is always of paneLayout it has the gap property of the paneLayout itself

 Save and run the application

 Try resizing the frame at runtime

4.3.1 Further practice
 Connect the checkboxes to show and hide the shapeControls

 Make the button and the jCArrowButton move the text from the textFields to the textArea

and the list

4.4 Using Dialogs and Menus
JBuilder provides two types of dialogs. There are the ones that can be found in the Object
Gallery (which we are not going to use) and the ones that rest on the Dialogs tab of the
Component Palette. The dialogs in the Object Gallery can be adjusted to the programmers
needs but they require a certain amount of extra code in order to work properly. The dialogs
of the Component Palette are standard dialogs that cannot be changed so much. The advantage
with them is that they can be used directly in your project without any extra code.

The menus that come with JBuilder are not stable. In this exercise a menubar component from
the AWT tab is used.

This exercise contains one frame, which can call different types of dialogs by either clicking
buttons or using menus. The main frame of the exercise looks like this:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 34

The five buttons call five different dialogs. The same can be done from the menus:

Show message shows the following message dialog:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 35

Input String activates the following dialog:

Use this dialog to add strings to the text area

Choose Font shows this dialog:

With this dialog you can choose the font that is used in the text area

Choose Color brings up the following dialog:

This dialog is used in this exercise for picking the background color of the frame

Choose file activates the following dialog:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 36

The file you choose is then connected to the image component.

To do this exercise, do the following:

 Create a new application

 Name the project Your home directory\JBuilder exercises\exercise4\exercise4.jpr
 Name the application MainApp
 Name the frame MainFrame

 Show the MainFrame on the design tab of the content pane

 Add the following components with the following properties to the frame8:

component property value

button1 label Choose Color
button2 label Show Message1
button3 label Choose File
button4 label Input a string
button5 label Choose a font
textArea1 text Add some text by using the string Input dialog
transparentImage1 imageName C:\JBuilder\lib\image32\appwr.gif

8 Some of the components are not visible on the frame during the design, to activate them for
changing their properties you can select them on the structure pane

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 37

message19

stringInput1

fontChooser1

colorChooser1

filer1

menuBar1 you can design the menus graphically, make the menus as

they are in the image that follows

9 A message has a property butonSet and a property labels. Normally the amount of labels
should be the same with the amount of buttons. If there is not enough labels then JBuilder
assigns default labels to the buttons that do not have a label. If the labels property is empty
then all the buttons should get the default labels. Unfortunately JBuilder has a bug and
sometimes creates the following line: message1.setLabels(null);, which has to be removed in
order to run the application.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 38

Once all this is done we can connect the buttons and the menuitems to the dialogs

All the dialogs have a show() method. By just calling this method the dialog is shown

You can then use methods like getResult() or getValue()

 Write the following code in the actionPerformed event method of the menuItem that is
supposed to activate message1:

message1.show();

 Write the same code for the mouseClicked event of the correct button

 Write the following code in the actionPerformed event method of the menuItem that is
supposed to activate colorChooser1:

colorChooser1.show(); shows the dialog
if (colorChooser1.getResult() == Message.OK) { If the OK button was pressed then
 bevelPanel1.setBackground(colorChooser1.getValue());
}

set the panels background to the color that was
chosen

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 39

 Write the same code for the mouseClicked event of the correct button

 Write the following code in the actionPerformed event method of the menuItem that is

supposed to activate filer1:

filer1.show(); show the dialog
try {
 transparentImage1.setImageName(filer1.getDirectory()+filer1.getFile());
}

try to the open file that was selected
by the dialog as an image

catch (Exception exc){
}

if exception then do nothing

 Write the same code for the mouseClicked event of the correct button

 Write the following code in the actionPerformed event method of the menuItem that is

supposed to activate fontChooser1:

fontChooser1.show(); show the dialog
if (fontChooser1.getResult() == Message.OK) { If the ok button was pressed then
 textArea1.setFont(fontChooser1.getValue());
}

set the font of the textArea to the font that was chosen

 Write the same code for the mouseClicked event of the correct button

 Write the following code in the actionPerformed event method of the menuItem that is
supposed to activate stringInput1:

stringInput1.show(); show the dialog
if (stringInput1.getResult() == Message.OK) { If the OK button was pressed
 textArea1.append("\n"+stringInput1.getValue());
}

append a line break plus the input string to the
textArea

 Write the same code for the mouseClicked event of the correct button

 Save and run the application10

10 JBuilder forgets sometimes to repaint the frame after you open a new image. The image is
actually there but for some reason the bevelPanel covers it. The picture will appear if you, for
example, resize the frame.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 40

4.5 Working with Frames
In this exercise we will work with an application which consists of three frames. The one
frame appears when we run the application, the other frames are shown when we press a
button which rests on the main frame of the application. To make things more interesting we
use checkboxGroup11 to decide which of the frames will be displayed when the button is
clicked. The main frame of the application shall look like this:

The two other frames look like this:

11 A checkboxGroup behaves as a group of radio buttons but it is built with checkboxes and a
checkboxGroup.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 41

 Create a new application (as usual)

 Add two new frames (file|new – frame)

 Add two checkboxes and a checkboxGroup components to the main frame

 Set the checkboxGroup property of the two checkboxes to the checkboxGroup1

 Add a button component to the main frame

 Add the following line of code to the mouseClicked event of the button1:

if (checkbox1.getState()){
 secondFrame.show();
 } else {
 thirdFrame.show();
}

if checkbox1 is checked then
show the second frame
else
show the third frame

 Add the following code to the componentShown event of the “this” (of the main frame):

checkboxGroup1.setCurrent(checkbox1); enable the first checkbox

 Change the exitOnClose property to False for the second and third frame12

 Add the following code to the windowClosing event of the second and third frame:

12 Preventing a Frame from closing the Application by changing the Frame's exitOnClose
property to False prevents the frame from closing. To restore the behavior of the close icon of
the frame, the following code has to be added to the windowClosing event of the frame:
this.dispose();
The method dispose() sets the frame's visible property to false. The frame is, however, still
available, the frame is not destroyed.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 42

this.dispose();

4.5.1 Further practice
Write some code to count how many times you have shown each frame and display this
number on the frame when you show it.

5 Introduction to DataGateway
Borland DataGateway is a collection of JDBC drivers that allow Java applications and applets
on any platform to access data sources such as dBase, Paradox, Microsoft Access, Informix,
IBM DB/2 and other. An alternative way to connect a database to a Java application or applet
is by using an ODBC driver. In order to make a database available through DataGateway, the
database has to be registered in the Borland Database Engine (BDE). Similarly, a database has
to be registered in the ODBC Data Source Administrator, in order to be available through
ODBC for a Java application.

6 Database exercises
In this chapter we present some basic database functionality that is available for JBuilder
application. The techniques that are used here may not be the fastest or the optimum in all
aspects.
In the following exercises, a sample database, created with MSAccess 97, is used. This
sample database consists of 4 tables: Courses, Teachers, Students and StudentCourse. A
course has a teacher who is responsible for this course. Every student has attended many
courses and a course may be attended by lots of students.In order to break this many to many
relationship, we add the studentcourse table. This model is extremely simplified, but is
suitable for the exercises that follow.

Figure 1 Relationships between tables is the sample database

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 43

This database is available at //goofy/prog-1/kurser/2i-1100/sample.mdb or can be downloaded
from http://L238.dsv.su.se/courses/2i-1100. Copy the database file to your account and
register it in the ODBC Data Source Administrator, as it is described later. You can use any
alias name you like, but the alias used later in the exercises is “school”.

6.1 Making a database available
JBuilder provides different ways for connecting to a database. DataGateway and ODBC are
two common ways. When the connection to the database has been established then both ways
behave similarly. ODBC seems to be more stable and that is why all the exercises that follow
build on ODBC connections.
In any way both ways to make a database available for a JBuilder application are presented.

6.1.1 Through DataGateway
To make a database available through DataGateway, the database has to be registered in the
BDE Administrator. The BDE Administrator is available in the control panel and under the
Start-menu | Programs | Borland DataGateway. The BDE Administrator provider both ODBC
and native drivers for connecting to the most common types of databases. In order to be able
to connect to the database with DataGateway, the database has to be registered with a native
driver.
Drivers available in the BDE
Administrator. More drivers can be
added on demand. The drivers shown
here are the ones that come with the
original installation of the BDE
Administrator.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 44

 By right clicking on the database and choosing
New… (or pressing Ctrl+N) you can add a new
database alias. The following window appears:

 Choose the native driver that matches the type
of your database!

 Name your alias and define the properties in the right pane of the BDE Administrator so

that your alias points at your database. Depending on the driver (and type of database)
different properties may be available.

 When you are done with this, choose Object|Apply or press .

Now the database is available through DataGateway.

6.1.2 Through ODBC
To register a database with an ODBC driver you can use the ODBC Data Source
Administrator, which can be found in the control panel. In the User DSN tab you can add your
personal aliases to point to your databases.

To add a new alias do the following:

 Start the ODBC Data Source Administrator!
 Activate the User DSN tab!
 Press the Add… button!
 Choose the suitable driver!
 Press the Finish/Slutför button!
 Give a name to your alias, a description and the database to be associated with the alias!
 Press the OK button!

Now your database is available for JBuilder through an ODBC driver.

6.2 Show and update a single table
In this exercise we will just work with one table only. Because of referential integrity between
the tables the table we will use is the table Students. To see and manipulate the data in the
table we will just use a gridControl and a navigatorControl:

The application will consist of one frame that shall look like this:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 45

 Create a new application

 Name the project Your home directory\JBuilder exercises\dbexercise1\dbexercise1.jpr
 Name the application MainApp
 Name the frame MainFrame

 Show the MainFrame on the design tab of the content pane

 Remove the bevelPanel from the frame

 Change the layout property of the frame (this) to PaneLayout

 Add a GridControl and a NavigatorControl (they are in the JBCL-tab) to the frame

 Add a Database component and a QueryDataSet component (Data Express tab) to the

frame

Your AppBrowser should look like this now:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 46

 Activate the database1 on the component tree

 Click on the connection property and make the connection wizard visible

 Click on the Choose URL button

A new window comes up:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 47

 Click on the Show data sources to show all the ODBC connections

 Choose the connection that points to the sample.mdb (the alias that you created in the
ODBC Data Source Administrator)

 Click OK

 You can now test the connection by clicking on the Test connection button.

 If the connection is successful then click OK. If the connection fails it may depend that the

database is open by another application.

 It is recommendable to save the application every few steps, just in case.

 Activate the queryDataSet1 on the component tree

 Click on the query property and make the query wizard visible

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 48

 Choose the database1 as Database

(The Browse tables button is now active. Clicking it will show the following window:

This can be helpful if you are not sure of the names of the tables and columns in the tables.)

 Write the following SQL statement:
SELECT * FROM students

 Click the Test query button to test the SQL

 Choose Cancel at the Create Resource Bundle window

 Select the queryDataSet1 as the DataSet for both the gridControl1 and the navgatorControl1

 Change the metaDataUpdate property of the queryDataSet1 to none

 Change the tableName property of the queryDataSet1 to students

 Set the rowId property of the STUDENTNR column of the queryDataSet1 to true

 You can also edit the editMask and displayMask properties of for example the
DATEOFBIRTH column, so that the date is displayed in a certain way

 Save and run the application

As you may have noticed the field STUDENTNR is a counter which does not have to be field
by the user. We can therefore either make this column read only or we can remove it from the
view of the table.

 To do that we just need to change the visible property of the STUDENTNR column of the
queryDatSet1 to true, or alternatively the property readOnly to true

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 49

6.3 Master-Detail
In this exercise we will use all the tables of our database. We will show for one course at a
time:
 the course’s code and description (courses.coursenr and courses.description)
 the course’s teacher’s name (teachers.name)
 all the students that have attended the course (students.*)

Our frame will look like this:

 Create a new application

 Place a gridControl, a navigatorControl, textControls and fieldControls on the frame

 Add a database and three queryDataSets to the frame

 Connect the database to the ODBC:school connection (see exercise 6.2)

 First queryDataSet’s SQL: Select * from courses

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 50

 Second queryDataSet’s SQL: Select * from studentcourse as sc, students as s where s.studentnr =
sc.studentn

 Third QueryDataSet’s SQL: Select * from teachers

 Activate the second queryDataSet and show the masterLink wizard by clicking the ellipsis

next to the masterLink property. Set the values as in the figure that follows:

 Select the first QueryDataSet as the

Master Dataset

 Select the Coursenr as the link column

 Test the link by clicking the test link
button

 Press OK

 Do the same for the third queryDataSet according to the next figure

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 51

 Connect the gridControl to the second queryDataSet (set the dataSet property of the
gridControl)

 Connect the navigator control to the first queryDataSet

 Connect the fieldControls to the course’s code and description (courses.coursenr and

courses.description) and the course’s teacher’s name (teachers.name) by setting the
dataSet property and the columnName property.

 To make all the fieldControls and queryDataSets read only set their readOnly property to

true

Some of the columns of the second queryDataSet (that is shown in the gridControl) may not
be important to be shown in the gridControl. It may also be needed to change the order that
the columns are displayed or even the way the data is displayed (for example a date may be
displayed with different masks). To define all these properties you can use the “designer” for
the queryDataSet that you want to manipulate:

 Right-click on the queryDataSet

 Select the Activate designer choice on th e
pop-up menu

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 52

The content pane shows now a table with all the columns of the queryDataSet and their
properties (the selected ones):

 Use the and buttons to change the order of the columns

 Write the following code in the navigated event of the first queryDataSet13:

 try {
 queryDataSet2.refresh();
 }
 catch (Exception ex) {
 }

 Save and run the application

6.4 Filtering Data - Calculated Fields
In this exercise we will use calculated fields, a calculated field is created at run time by the
program and it is not part of the database. A calculated field appears for example as an extra
column in a queryDataSet. In this exercise we will create a calculated field which will be a
concatenation of three other fields with some extra characters.

Further more we will try to navigate through a queryDataSet by using a locatorControl
component. A locatorControl is similar to a textField but it is connected to a dataSet and to a
column of the dataSet. A locatorControl performs a best-match locate (within the specified
column) after each character is entered.

In addition to all that we will try to filter the result of a queryDataSet by using a couple of
checkBoxes and the filterRow event of the queryDataSet.

13 These lines of code are just to ensure that every row of the query is shown once. If you try
to run the application without this code it is possible that you see the same row of the query
multiple times in the gridControl.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 53

The frame will hopefully look like this:

 Start by creating a new application

 Add a database component and two queryDataSet components to the frame

 Connect the database to the school database

 QueryDataSet1 SQL: Select * from courses

 QueryDataSet2 SQL: Select * from studentcourse as sc, students as s where s.studentnr = sc.studentnr

 Set the queryDataSet1 to be the master of the queryDataSet2 with coursenr as the link

 Set both queryDataSets to be read only

 Activate the designer of the queryDataSet1

 Add a new column and edit the properties of the columns to be like this (the column
“Column” is filled by JBuilder and it not significant to us):

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 54

 Write the following code at the calcFields event of the queryDataSet1:

calcRow.setString("ALLINFO", changedRow.getInt("COURSENR")+ " " +
 changedRow.getString("DESCRIPTION")+ " - " +
 changedRow.getShort("CREDITS")+" credits");

This code calculates, for each row of the queryDataSet1, the value of the ALLINFO column14.

 Activate the designer of the queryDataSet2

 Edit the properties of the columns (and even their order) to be like this:

 Add the following GUI components with properties to the frame:

component name property name property value
textControl1 text Course description:
locatorControl1 dataSet queryDataSet1
 columnName DESCRIPTION
listControl1 dataSet queryDataSet1
 columnName ALLINFO
 readOnly True
jCheckBox1 text Show G
 selected True

14 A column with that name and of calcType:calculated has to be predefined for the
queryDataSet.

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 55

jCheckBox2 text Show VG
 selected True
gridControl1 dataSet queryDataSet1
 readOnly True

 To connect the jCheckBox1 and jCheckBox2 to the queryDataSet2 add the following code
to the filterRow event of the queryDataSet2:

if ((row.getString("grade").equals("G") && jCheckBox1.isSelected()) | if (the row’s grade = “G” AND

jCheckBox1 is selected) OR
 (row.getString("grade").equals("VG") && jCheckBox2.isSelected())) (the row’s grade = “VG” AND

jCheckBox2 is selected)
 {
 response.add();
 }

then
add this row to the result

 To initiate a refiltering of the records every time the jCheckBoxes are selected or

deselected add the following code to the itemStateChanged event of the jCheckBoxes:

try {
 queryDataSet1.refilter();
 queryDataSet2.refresh();
 }
 catch (Exception ex) {
 }

 Add the following code to the selectionChanged event of the listControl1:

try {
 queryDataSet2.refresh();
 }
 catch (Exception ex) {
 }

 Run the application

6.5 Using parameterized queries
This exercise, even though the last, is very small and simple. The only thing we will do is
connect an SQL parameter to a textField.

 Start a new application

 Add a database, queryDataSet and a parameterRow to the frame

 Edit the query’s SQL and write the following:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 56

Select name, adress, telnr, email from students where (name=:name)

 In the Parameters tab select the parameterRow1:

 Press OK to close the dialog

 Activate the <new column> under the ParameterRow1 on the Component tree:

 Change its columnName property to “name”

 Now add a gridControl and a textfield to the frame

 Make the gridControl1 read only

 Connect the gridControl1 to the queryDataSet1

The frame should look like this:

Institutionen för Data- Introduction to JBuilder 2 Stockholm
och Systemvetenskap [version 0.0] 08/23/07
SU/KTH
nikos dimitrakas

 57

The only thing missing is the connection between the textField1 and the name-column of the
parameterRow1.

 Add the following code at the keyPressed event of the textField1

if (e.getKeyCode() == KeyEvent.VK_ENTER) {
 try {
 parameterRow1.setString("name", textField1.getText());
 queryDataSet1.refresh();
 }
 catch (Exception ex) {
 }
 }

If ENTER was pressed then

set the parameter “name” to the current text of
the textField1
refresh the queryDataSet1

 Run the application

7 Epilog
JBuilder 2 has many more possibilities. There are more examples and solutions to various
problems in the help files of JBuilder. Other useful sources of information regarding JBuilder
are:
• Jbuilder newsgroups found at: forums.inprise.com
• Jbuilders homepage found at: http://www.inprise.com/jbuilder/
• Other literature: JBuilder Essentials, Jensen et al, 1998 (JBuilder 1)

