

INTRODUCTION TO

JDBC
- Revised spring 2004 -

Introduction to JDBC – SPRING 2004

 2

1 What is JDBC?
Java Database Connectivity (JDBC) is a package in the Java programming language and
consists of several Java classes that deal with database issues such as connections, queries
etc. Included in the Java toolkit is the JDBC-ODBC Bridge driver but there are other
specific drivers available from different database manager manufacturers. In this
introduction we’ll be using the DB2 JDBC driver from IBM named:
COM.ibm.db2.jdbc.app.DB2Driver. This is important since different drivers do not always
act the same way.

To be able to compile and execute a Java program that uses the JDBC framework you need
to have two things. First, you need to have the Java Standard Development Toolkit (SDK)
installed. This environment is free of charge and could be downloaded from:
http://java.sun.com/j2se/1.4.2/download.html Secondly, you need to have a ODBC or a JDBC
driver installed that corresponds to the database management system (DBMS) you are using
or plan to use. These drivers are often supplied by the DBMS manufacturers.

Just similar to any Java application a JDBC enabled Java application is compiled through
the Java compiler javac. The compiler creates machine readable (executable) code out of
your Java source code which could be executed through the virtual machine by the java
command.

2 An example (JDBCAppa):
On the on the local network path: \\db-srv-1\studkursinfo\IS4 vt2004\myjdbctest you’ll find the
file JDBCAppa.java. This is the complete source code of this example and there you’ll see
all syntax used in this introduction in its context.

1. First of all, create a new folder (preferably on your m: drive) and name it something
convenient like for example myJDBC.

2. Copy the source file JDBCAppa.java to your new folder.

Now, the JDBCAppa.java file is not compiled yet, as you’ll see if you open it in a text
editor like for example notepad. It’s is still in a high level programming language, which is
easily readable and meaningful for the human eye. This means that the application cannot
be executed since what tends to be readable for a computer is garble for humans and vice
versa.

3. Compile the .java file by using the javac compiler to create a new .class file. Do this
by placing yourself in the newly created folder in a Windows Command Prompt (in
this case m:\myJDBC) and issue the command: javac JDBCAppa.java

As you’ll see, this procedure created the file JDBCAppa.class. This is the low level
language and virtual machine specific instructions understood by the computer (and not by
humans). Hopefully you now have two versions of the application. One that you are able to
read, the other meaningful for the computer. Execute the application by using the virtual
machine caller command: java JDBCAppa. Every time you change something in the source
code you have to recompile the .class file to see the effects when running the application.

2.1 Explanation of the source code
Open up JDBCAppa.java to view the application source code. Exactly as the compiler and
the virtual machine (VM), we’ll go through the file, reading from the top.

Introduction to JDBC – SPRING 2004

 3

import java.sql.*
…

This is a statement to include compiled Java methods and constructs from other packages.
The star “*” states that we shall include all classes in the java.sql package path. This is the
package that includes all JDBC components that we are interested in.

…
static protected Connection con;
…
private String URL = ”jdbc:db2:sample”;
private String userID = “”;
private String driver = “COM.ibm.db2.jdbc.app.DB2Driver”;
private String password = “”;
…

This section creates a lot of variables. con is the variable that is going to manage out
database connection, URL is the path of our database, driver specifies where the driver
details are located and userID and password are giving the required information to log on to
the database. After the variables are created, the compiler/VM call the main method which
in turn call out to the connect, select and update methods.

2.1.1 The connect method
…
class.forName(getDriver());
…

This method loads the specified driver.

…
con = DriverManager.getConnection(getURL(), getUserID(), password);
…

This creates a connection instance and attaches this to the con handle created earlier. The
connection instance connects to the DB2 database by the help of the URL, userID and
password variables.

…
con.setAutoCommit(false);
…

This specifies that all changes made in the database are not inserted until an explicit commit
command is issued. If autocommit is turned on, every query is committed directly after it
has been executed.

2.1.2 The select method
At first the variables query (String), rs (ResultSet) and stmt (Statement) are declared. Query
holds the SQL string that’s specifying what we are looking for, rs is the variable that is
going to keep the query results and stmt is the variable that executes the query against the
database connection.

…
query = “SELECT empno, firstnme FROM employee;”;
…

This specifies our query which will collect all employment numbers and first names of all
employees registered in the database.

Introduction to JDBC – SPRING 2004

 4

…
stmt = con.createStatement();
…

The stmt handle is associated with a statement object that in turn is linked with the database
connection.

…
rs = stmt.executeQuery(query);
…

This statement executes the SQL query specified in the string query against the connection
specified in stmt. The result of the query is put in rs.

…
while(rs.next()){
 System.out.print(“ empno= ”+rs.getString(“empno”));
 System.out.print(” “);
 System.out.println(“ firstname= ”+rs.getString(“firstnme”));
}
…

This WHILE-loop iterates through the collected rows in the data collection rs until the last
row is fetched. The method next returns false when the collection is empty, ending the
WHILE-loop. For each iteration the metod getString retrieves the value of the column
specified in its argument. For example rs.getString(“firstnme”) retrieves the value of the
column named firstnme in the fetched row. It is also possible to use other methods to collect
values of different data types like Integers or Booleans. For example specifying
rs.getFloat(6) would retrieve the sixth column in the row and treat the collected value as a
Float. This can be seen in the last part of the select method in JDBCAppa where a non-
decimal number is fetched by the getInt method.

2.1.3 The update method
This is a little different then the previous method since we’re not retrieving anything, only
changing old or inserting new data. In this case we’re also interested in working with
dynamic parameters that are changed during the execution of the program. To do this we
use the PreparedStatement class instead of Statement. The main difference is that
PreparedStatement uses ‘?’ signs as dynamic parameters. Consider the following:

…
query = “UPDATE employee SET firstnme = ‘SHILI’ WHERE empno =?;”;
…

This creates an ordinary SQL string with the exchangeable parameter ‘?’.

…
stmt = con.preparedStatement(query);
…

This does exactly the same as when declaring the statement in the select method, although
this is a PreparedStatement.

…
stmt.setString(1,param1);
…

This is interesting since it changes the first ‘?’ parameter of the query specified in stmt to
the content of the string param1. The first integer argument specifies which parameter

Introduction to JDBC – SPRING 2004

 5

number should be changed. For example setString(5,”Mike”) would have changed the fifth
question mark with the text Mike.

…
stmt.executeUpdate();
…

This would execute the update in the database. Note that since we don’t collect any data we
don’t need any ResultSet to capture it in.

3 Additional information:
JDBC Tutorial: http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html
Java Basics: http://java.sun.com/docs/books/tutorial/getStarted/cupojava/win32.html
java.sql Documentation: http://java.sun.com/j2se/1.3/docs/api/java/sql/package-summary.html

4 Writing your first JDBC application
It’s greatly recommended to use your own folder under the m: drive as a base when creating
the application. Try to reuse as much of the JDBCAppa.java as possible, modify it and
make adjustments rather then starting from scratch. A few points to keep in mind when
doing this:

1. The name of the file and the class must be the same. Renaming the class = renaming
the file and vice versa.

2. The database path and login information must be correct in the application.

