

INTRODUCTION TO

SQLJ
- Revised Spring 2005 -

Introduction to SQLJ – Spring 2005

 2

1 What is SQLJ?
SQL for Java (SQLJ) is a way to seamlessly embed SQL syntax directly in the Java
programming language. It uses several classes included in the JDBC package but also have
some classes of its own. This is done through an additional pre-compiler that interprets the
SQLJ specific syntax and creates source files in Java. These files are then compiled as any
other Java application through the javac compiler.

To be able to compile and execute a Java program that uses the SQLJ framework you need
to have three things. First, you need to have the Java Standard Development Toolkit (SDK)
installed. This environment is free of charge and could be downloaded from:
http://java.sun.com/j2se/1.4.2/download.html. Secondly, you need to have the SQLJ pre-
compiler (sqlj.exe) and the SQLJ Java package (sqlj.zip, usually found under
c:\SQLLIB\Java). Last, you need to have the program nmake.exe and the batch-file
embprep.bat (usually found in c:\MyProg).

When writing a SQLJ application you save the source code as a .sqlj file. To produce a Java
source file out of this you use the pre-compiler. The resulting .java file can then be
compiled through the default Java compiler javac. This produces the .class file that could be
executed by the virtual machine. The embprep.bat file is especially made for your course
and need to be modified in case it is used for other purposes.

2 Makefile
A makefile is a set of instructions on how to compile an application. In these instructions
you are able to define a sequence of commands that are to be executed when triggering the
nmake application. Consider the following:

crazy:
 cls
 dir

Note! Every command must be entered on a single row and started with a tab character.

When executing the command nmake crazy in a Windows Command Prompt it’ll issue the
command cls followed by dir. It is also possible to declare parameters in a makefile by
using the commands:

DIRNAME=sample

DIRNAME is the name of the parameter and sample is its value. If you want to use this
parameter you type:

crazy:
 cls
 dir $(DIRNAME)

This would issue the command cls followed by dir sample

In makefiles it is also possible to use condition constructs. You can define files that have to
be available before an attempt to access them is made. Do this by adding the file names
according to the example below:

crazy : file1.txt file1.bak
 cls
 dir $(DIRNAMN)

Introduction to SQLJ – Spring 2005

 3

If you use the statement nmake crazy, the nmake application will try to find file1.txt. If the
file is missing the application will try to create it according any available instructions. If no
such instructions exist it will return a ”Fatal: ’file1.txt’ does not exist – don’t know how to
make it” error. The following example shows how to specify instructions for file creation:

Create the constant DN
DN=sample

#Specifying the crazy command
crazy : file1.txt file1.bak
 dir $(DN)

#Instructions to create file1.txt
file1.txt :
 dir >file1.txt

#Instructions to create file1.bak
file1.bak : file1.txt
 copy file1.txt file1.bak

This will set the constant DN to the value sample and test that the files file1.txt and file1.bak
exists before trying to issue the command dir sample. If one of the files is missing it will be
made by piping a dir command into file1.txt and by copying this file into file1.bak. Every
row that starts with the # character is treated as a remark.

3 An example (Appa):
On the location \\db-srv-1\studkursinfo\IS4 vt2005\mysqljtest on the local network you’ll find
the file Appa.sqlj and the makefile. Appa.sqlj is the complete source code of this example
and there you’ll see all syntax used in this introduction in its context. Makefile is the file
containing the instructions used together with the nmake program to create your running
Java application.

1. First of all, create a new folder (preferably on your d: drive) and name it something
convenient like for example mySQLJ.

2. Copy the source file Appa.sqlj and the makefile from the network to your new
folder.

Now, the Appa.sqlj file is not compiled yet, as you’ll see if you open it in a text editor like
for example notepad. In fact it’s not even a complete Java source file. If you try to compile
it through javac all you’ll get is a handful of problems. Appa.sqlj is still in its SQLJ specific
high level programming language, which is easily readable and meaningful for the human
eye.

3. Compile the .sqlj file by using the SQLJ pre-compiler to create a new .java file.
Probably the easiest way to do this is by placing yourself in the newly created folder
using a Windows Command Prompt (in this case d:\mySQLJ) and issue the
command: nmake Appa. This will execute the following commands from the
makefile:

Use the java compiler
CC= javac

To connect to another database update the DATASOURCE variable.
User ID and password are optional. If you want to use them,
update TESTUID with your user ID, and TESTPWD with your password.

Introduction to SQLJ – Spring 2005

 4

DATASOURCE=sample
TESTUID=
TESTPWD=

Build and run the following SQLJ application with these commands:
By Michael Persson
nmake Appa
java Appa

Appa.java : Appa.sqlj
 sqlj Appa.sqlj

Appa.class : Appa.java Appa_SJProfile0.ser

Appa : Appa.class
 $(CC) Appa.java
 embprep Appa $(DATASOURCE) $(TESTUID) $(TESTPWD)

To run the application we need to have the Appa.class file to address the Java virtual
machine. If Appa.class is missing we need to have the Appa.java and Appa_SJProfile0.ser
files. Appa.java can be created if the Appa.sqlj file is available. The three constants that are
used (DATASOURCE, TESTUID, TESTPWD), specifies the database information needed
in the final application.

The source code specified in the .sqlj files is very similar to plain Java. All that differs are
the database specific commands which in SQLJ are denoted by a beginning #sql markup on
each row. These are the rows the pre-compiler turn into Java when turning the file from .sqlj
to .java.

3.1 Explanation of the source code
Open up Appa.sqlj to view the application source code. Exactly as the SQLJ pre-compiler,
Java compiler and the virtual machine, we’ll go through the file, starting at the top.

import sqlj.runtime.*;
import sqlj.runtime.ref.*;
…

These are statements that include already compiled Java methods and constructs from other
packages. The star ‘*’ states that we shall include all classes in the sqlj.runtime and
sqlj.runtime.ref package paths.

…
#sql iterator Appa_Cursor1 (String empno, String firstnme);
#sql iterator Appa_Cursor2 (String);
…

These statements define two SQLJ data types that later can be used to define cursor
variables. The first one is called Appa_Cursor1 and the other is called Appa_Cursor2.
Appa_Cursor1 define the two string arguments as empno and firstnme while Appa_Cursor2
only defines the argument as a string value.

Further down in Appa.sqlj is the main method that starts with defining two cursor handles
that are defined just like any other Java variable with the Appa_Cursor data types we
specified in the previous step:

…
Appa_Cursor1 cursor1;

Introduction to SQLJ – Spring 2005

 5

Appa_Cursor2 cursor2;
…

The next part handles the database connection. Note the URL jdbc:db2:sample specifying
the path to the DB2 database sample. Also note the use of DefaultContext that specifies the
database connection and handles the execution of SQL queries, and the con variable that
supplies a handle to this connection. If the con variable is set to auto commit the queries,
they are applied directly into the database when carried out. If set to false, an explicit
commit command has to be issued for the changes to be effective.

…
#sql cursor1 = {SELECT empno, firstnme FROM db2admin.employee};
…

This select statement has to fetch the same fields as the arguments specified in
Appa_Cursor1. The fetched rows have to have just as many columns, have the same column
names in the exact same order as the arguments given by Appa_Cursor1. Using any other
construct will fail to retrieve the information we want to collect. Since Appa_Cursor1 is
specified to take two string arguments (empno and firstnme) using cursor1 that’s specified
to this type works just fine. However, using the cursor2 variable wouldn’t work. To pull out
the information from the data collection after it has been fetched, we can do the following:

…
while (cursor1.next()) {
 str1 = cursor1.empno();
 str2 = cursor1.firstnme();
 …
}
cursor1.close();
…

The WHILE-statement iterates through the whole collection of data. Retrieving row after
row for each loop by the next method and accessing the row’s column by specifying a
method in the cursor called after their name. When the data collection is exhausted, the next
method returns false and the close method closes the connection to the database.

Simpler SQL queries that return no or only a single row of data don’t have to use cursors.
Consider the following:

…
#sql {UPDATE db2admin.employee SET firstnme =’SHILI’ WHERE empno =
‘000010’};
…

This would update the employee number 000010 by setting his/her first name to SHILI. It’s
also possible to denote variables inside the query by using the colon qualifier character ‘:’ in
front of the variable name. To put the integer value from a select statement into the variable
count1 would look like:

…
#sql { SELECT count(*) into :count1 FROM db2admin.employee };
…

Using undeclared cursors like the Appa_Cursor2 with unspecified argument names need
another approach. In this case you could use the FETCH statement that iterates through a
collection of data and puts the retrieved values into the given variable. In the example below
the first names gathered from the select statement are put into the str2 variable. The
endFetch method ends the loop when there are no more rows in the data collection:

Introduction to SQLJ – Spring 2005

 6

…
str1 = "000010";
#sql cursor2 = { SELECT firstnme from db2admin.employee where empno =
:str1 };
…
while (true) {
 #sql { FETCH :cursor2 INTO :str2 };
 if (cursor2.endFetch()) break;
 …
}
cursor2.close();
…

If you like, SQLJ could also perform transaction management. To rollback a transaction,
use the command:

…
#sql { ROLLBACK work };
…

Basically, using SQLJ is designed to be easy. Creating a Java application from your SQLJ
file should be as easy as running the command nmake Appa to compile it and java Appa to
execute it. This would look like:

D:\mySQLJ>nmake Appa

IBM(R) Program Maintenance Utility for Windows(R)
Version 3.50.000 Feb 13 1996
Copyright (C) IBM Corporation 1988-1995
Copyright (C) Microsoft Corp. 1988-1991
All rights reserved.

 sqlj Appa.sqlj
 javac Appa.java
 embprep Appa sample

[IBM][SQLJ Driver] SQJ0001W Customizing profile "Appa_SJProfile0".
PROFILE NAME: Appa_SJProfile0
SOURCE PROGRAM: Appa.sqlj
ENTRY LINE MESSAGES

------ ------ ---
--

SQL0060W The "SQLJ" precompiler is in progress.
SQL0091W Precompilation or binding was ended with "0"
 errors and "0" warnings.

D:\mySQLJ>java Appa
Retrieve some data from the database...
Received results:
 empno= 000010 firstname= CHRISTINE
 empno= 000020 firstname= MICHAEL
 empno= 000030 firstname= SALLY
 empno= 000050 firstname= JOHN
 empno= 000060 firstname= IRVING
 empno= 000070 firstname= EVA
 empno= 000090 firstname= EILEEN
 empno= 000100 firstname= THEODORE
 empno= 000110 firstname= VINCENZO
 empno= 000120 firstname= SEAN
 empno= 000130 firstname= DOLORES
 empno= 000140 firstname= HEATHER

Introduction to SQLJ – Spring 2005

 7

 empno= 000150 firstname= BRUCE
 empno= 000160 firstname= ELIZABETH
 empno= 000170 firstname= MASATOSHI
 empno= 000180 firstname= MARILYN
 empno= 000190 firstname= JAMES
 empno= 000200 firstname= DAVID
 empno= 000210 firstname= WILLIAM
 empno= 000220 firstname= JENNIFER
 empno= 000230 firstname= JAMES
 empno= 000240 firstname= SALVATORE
 empno= 000250 firstname= DANIEL
 empno= 000260 firstname= SYBIL
 empno= 000270 firstname= MARIA
 empno= 000280 firstname= ETHEL
 empno= 000290 firstname= JOHN
 empno= 000300 firstname= PHILIP
 empno= 000310 firstname= MAUDE
 empno= 000320 firstname= RAMLAL
 empno= 000330 firstname= WING
 empno= 000340 firstname= JASON

Retrieve the number of rows in employee table...
There are 32 rows in employee table.

Update the database...
Retrieve the updated data from the database...
Received results:

 empno= 000010 firstname= SHILI

Rollback the update...
Rollback done.

4 Writing your first SQLJ application
It’s greatly recommended to use your own folder under the d: drive as a base when creating
the application. Try to reuse as much of the Appa.sqlj and the makefile as possible, modify
them and make adjustments rather then starting from scratch. A few points to keep in mind
when doing this:

1. The name of the file and the class must be the same. Renaming the class = renaming
the file and vice versa.

2. The instructions in the makefile must correspond to the filenames in use.

3. The path to the database and the login information must be correct both in the
makefile and in the application.

4. The arguments specified in the declared SQLJ cursors must correspond to the fields
in the SQL queries.

