

DB2 TextExtender
(Assignment 2)

 Relational Database Design

*62/2i1056/2i1071/2i4110 autumn term 2005

v. 2.2.2

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

Table of Contents

Introduction ... 1

Working with DB2 TextExtender ... 1

Creating the database .. 1
Explanation of the LOAD-statement: .. 8

Activate the database for TextExtender... 8

Querying the database ... 13
Ordinary SQL queries .. 13
Queries about the documents meta information... 14
Queries about the documents textual contents (both linguistic and precise) 15
Queries that combine all types of queries .. 28

When something has gone wrong ... 30

Assignments ... 30

Reference materials... 31

Specifying search arguments... 31
Searching for several terms .. 31
Searching with the Boolean operators.. 31
Searching for variations of a term .. 32
Searching for parts of a term (character masking) ... 32
Searching for terms that already contain a masking character... 33
Searching for terms in any sequence.. 33
Searching for terms in the same sentence or paragraph ... 33
Searching for synonyms of terms... 34
Making a linguistic search.. 34
Searching with the Boolean operator NOT .. 35
Searching for similar-sounding words ... 35

Indexing... 36
Linguistic index.. 36
Precise index .. 37

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 1 -

Introduction
DB2 TextExtender is an extension to DB2 Universal Database. It can be described as a “full-
text retrieval program” that makes it possible to search within text documents that are either
stored in the database or stored as external files outside of the database management system’s
control. TextExtender performs the search of text documents by searching in a predefined
index. Searching is in other words not being done in the actual document.

TextExtender consists mainly of three parts. These are:

Command line interpreter. This is a command prompt for performing commands that are
specific to the TextExtender (e.g. for indexing documents). Many of the commands used for
searching in the documents and creating tables etc. are mainly done from DB2’s ordinary
environment (Command Editor or Control Center).

User-defined functions (UDFs). Functions included in ordinary SQL queries to allow
searching in text documents. Since the UDFs are additions to SQL, the searching is performed
as usual from Command Editor and it is also possible to integrate queries on ordinary columns
(e.g. name, date etc.) together with the search in text documents (see appendix on searching).

Application programming interface (API). These are functions that can be called from C-
programs in order to search in text documents and show the result from the search.

Working with DB2 TextExtender

This chapter describes how to create a full-text database consisting of master theses and
information about their author(s), title, year and language. This full-text database will later be
used to perform searching with regard to the content of the theses.

Creating the database
1. Create a database through Control Center and name it LAB.

2. Create a table named PAPER from DB2 Control Center according to below:

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 2 -

• Designate your schema as Table schema (we are using DB2ADMIN in this case). See
below.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 3 -

• Define the same columns as in the picture below (in the Columns tab).

The DOCUMENT column is going to be of the data type CLOB (Character Large Object).
This column is going to contain the files with the theses, which are going to be imported later.
Change the size of the CLOB (to approx. 20 Mb) so we are ensured that the documents will
fit. Make sure the column is neither logged nor compact.

• Define the column ID as primary key (in the Keys tab):

• Click Finish.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 4 -

3. Also create the table AUTHOR according to this:

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 5 -

• Also add a foreign key according to this:

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 6 -

4. Create a folder on your removable disk (D:) which could be named TXTemp:

D:\TXTemp. Create a subfolder to TXTemp named Docs: D:\TXTemp\Docs.

5. Copy the master theses files (*.rtf, *.html and *.doc) from the folder: \\Db-srv-1
\StudentCourseMaterial\x62 ht2005\Lab2\Documents on the DB-SRV-1 server to the
Docs folder you have just created. See the Introduction to DB2 compendium for
information about how to log in and get access to files on the DB-SRV-1 server.

6. Go to Command Editor and connect to the database with the following command:

CONNECT TO lab

7. Fill the tables created previously with the documents and other data by running the special

LOAD command and then the INSERT statements from populate.txdb.script in
Command Editor. The populate.txdb.script file can be found in the folder: \\Db-srv-1
\StudentCourseMaterial\x62 ht2005\Lab2. You will need to copy this file together with
thesisdata.txt and mess.txt to your TXTemp folder created in the step 4 before you can
execute LOAD and the INSERT statements as shown in the figures below.

Note: When you execute INSERT statements, you have to check if you have the correct
settings for the Statement Termination Character! See the Introduction to DB2
compendium for information about how to change these settings.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 7 -

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 8 -

Explanation of the LOAD-statement:
The LOAD command is used to load CLOBs into the database. The main syntax follows:

LOAD FROM path
OF format-type
LOBS FROM CLOB-path
MODIFIED BY list of modifiers
METHOD column mapping method
MESSAGES filename
INSERT INTO table (list of columns)

• The first path defines where the file with the data (to be loaded into the table) is located.

• Format-type describes the format for the file specified above. DEL is a valid value and

means that the file is of the format Delimited ASCII.

• CLOB-path defines where the CLOB-documents are located. One is expected only to

write the filename in the data file that was specified in the first path. The CLOB-path is
then placed before these filenames.

• List of modifiers defines which different type of changes that should be applied to the

loaded data file (that was specified in the first path). There are several different values that
are valid here. The values should be separated by a space. Valid values include
LOBSINFILE and COLDELx where x is the character that separates values in the data file.
If LOBSINFILE is specified this means that the CLOB’s complete name has been
modified by the CLOB-path specified earlier. If COLDEL is specified, it means that
values in the data file are separated by a comma character (,).

• Column mapping method specifies in which way the values from the data file should be
loaded. There are three different methods. We are in this case using the method P which
means that the order of columns can be specified by mentioning the position of the
columns in the data file, e.g. P (1,3,2) means that column 1 should be loaded first, column
3 second and column 2 last.

• Filename defines where DB2 should write its messages. The file must be created in

advance (e.g. as an empty text file).

• Table (list of columns) specifies which table and which columns that the loaded data

should be placed in. The order of the columns is mapped to the order of columns specified
in the METHODS-clause.

Activate the database for TextExtender
So far we have actually only worked with standard DB2 functionality. Now it’s time to get
started with TextExtender.

8. Open a Command Prompt window and give the command txstart. This is a process that

has to be started before one can create indexes or search in indexed documents.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 9 -

9. Open DB2TX Command Line Processor via the Start-menu under Start> Programs>

Databases> IBM DB2> DB2 Text Extender> DB2 Text Extender Command Line
Processor.

10. Connect to the database with the command CONNECT TO lab.

11. Give the command ENABLE DATABASE to activate the current database for TextExtender.
This command creates a TextExtender-table named DB2TX.TextColumns. This table
contains information about tables and columns that are activated for TextExtender.

12. Before we activate any column for TextExtender we can perform some standard

configuration in DB2 so that we minimize the need for changes at a later stage. We can
with the following command set default values for format, character set coding, language
and index type:

CHANGE TEXT CONFIGURATION USING CCSID 1252 FORMAT rtf INDEXTYPE linguistic
LANGUAGE swedish

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 10 -

We are thereby assuming that these values will correspond to the majority of our
documents. We can also verify that our new configurations have been registered with the
command GET TEXT CFG:

We chose Swedish as default language, RTF as default file format and Swedish character
set. We also set linguistic to be the default index type. Differences between different index
types are explained later. Setting the default file format actually has no effect. DB2
manages to recognize the file format of every file regardless of what is set as default.

13. Give the command ENABLE TEXT COLUMN according to below in order to create a

linguistic index.

ENABLE TEXT COLUMN paper document HANDLE linghandle INDEXTYPE linguistic

• paper is the name of the table.
• document is the name of the CLOB column.
• linghandle is the name of the handle for the index that will be created. The handle

becomes a column in the table. The column in this case gets the name linghandle. We
will later see how to use the handle in order to get to the index.

• linguistic is the index type to be used for the created index. (Observe that you can skip
the INDEXTYPE-clause, if you want to use the default index type.)

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 11 -

14. After a few seconds you can give the following command in order to see how far the

indexing has gotten:

GET INDEX STATUS paper HANDLE linghandle

If indexing still remains you can wait for a while and give the command again. When
indexing has been finished you’ll receive following:

15. Now do the same again to create a new index of the index type precise. Use the following

command:

ENABLE TEXT COLUMN paper document HANDLE prechandle INDEXTYPE precise

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 12 -

16. Since all documents are not written in the same language we must now update our handles,
since the handles now do believe that every document is written in Swedish (i.e. the default
language). We can set the language in a handle for every specific row. We can use the
following SQL statement that uses the function DB2TX.language(handle, language):

UPDATE paper
SET linghandle = DB2TX.language(linghandle, 'US_ENGLISH'),
 prechandle = DB2TX.language(prechandle, 'US_ENGLISH')
WHERE language = 'English'

Note: Check the settings for the Statement Termination Character before you execute this
query! The Statement Termination Character must be specified, otherwise you will not be
able to run statements which are split over several lines.

So, we have changed both handles on every row that contains an English document to new
handles. The function DB2TX.language takes a handle, changes the language and returns the
new handle.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 13 -

Querying the database
In this section we will perform queries against our database. We will perform:
• ordinary SQL queries,
• queries about the meta information of the documents,
• queries about textual contents (both linguistic and precise) of the documents,
• queries that combine all the previous types of queries.

Ordinary SQL queries
1. We can start with the following query (that illustrates that our database is an ordinary

database):

Show the amount of authors per paper!

SELECT title, COUNT(*) as no_of_authors
FROM paper, author
WHERE paper=id
GROUP BY title

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 14 -

Queries about the documents’ meta information
1. Show the language of each document (retrieved from our handles)! Here we can use the

function DB2TX.language that we used earlier. We can also retrieve the language from
the column language to be able to see if they correspond to each other.

SELECT id, DB2TX.language(linghandle) AS "Language from LH",
DB2TX.language(prechandle) AS "Language from PH",
language AS "Language from language"
FROM paper
ORDER BY language

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 15 -

Queries about the documents’ textual contents (both linguistic and precise)
There are several functions that can be used to run queries against the CLOB-documents’
textual contents. These functions are shown in the table below.

Functions (UDF) Purpose
CONTAINS Evaluates a condition for every document. Returns 0 or 1, where

0 means false and 1 means true.
NO_OF_MATCHES Returns the amount of hits for a certain condition for every

document.
RANK Returns a ranking value per document given a condition.

The returned value lies between 0 and 1, where 1 is the highest
value.

The conditions can contain some keywords. These keywords operate differently depending on
the index type being used. The following table summarizes the keywords we will use:

 Index type
Keyword Linguistic Precise

PRECISE FORM OF Not available Default
STEMMED FORM OF Default Not available
SYNONYM FORM OF Available Available

SOUNDS LIKE Available Available
IN SAME SENTENCE AS Available Available

IN SAME PARAGRAPH AS Available Available

The first four keywords can be followed by a language. If the language is left out the default
language is used. It is recommended that one always specify the language, to avoid confusion.
Valid values for language include SWEDISH and US_ENGLISH. (The keywords for the
languages are case-sensitive!)

The conditions can of course also contain logical operators like NOT, AND (&) and OR (|).
There is also the possibility to use wild-cards like % and _.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 16 -

In order to exemplify the different functions’ usage we will now look at a few examples.

1. Which documents contain the Swedish word kulturell? In this case we want to retrieve the

title of the documents that contain exactly the word kulturell.

This can be done with the following SQL query:

SELECT title
FROM paper
WHERE db2tx.contains(prechandle, 'SWEDISH "kulturell"') = 1

By using prechandle in our search we implicitly specify that we want to use the keyword
PRECISE FORM OF.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 17 -

2. If we now instead would like to retrieve all documents that contain some form of
inflection of the word kulturell we could use our linghandle:

SELECT title
FROM paper
WHERE db2tx.contains(linghandle, 'SWEDISH "kulturell"') = 1

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 18 -

3. We can modify the query so that we can see which types of inflections of the word exist in
each document. We can in the SELECT clause include a column for each inflection and
by using the function DB2TX.no_of_matches see the number of occurrences in each
document.

SELECT DB2TX.no_of_matches(prechandle, 'SWEDISH "kulturell"') AS kulturell,
 DB2TX.no_of_matches(prechandle, 'SWEDISH "kulturellt"') AS kulturellt,
 DB2TX.no_of_matches(prechandle, 'SWEDISH "kulturella"') AS kulturella,
 title
FROM paper
WHERE db2tx.contains(linghandle, 'SWEDISH "kulturell"') = 1

So, by doing this we can see that the paper "Distansarbete" contains the inflected form
kulturella 1 time, which makes it pass this condition, but it will not pass the condition of the
precise form kulturell.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 19 -

We can also choose to look for a general concept and not a specific word. To search for
concepts, use the synonym forms of a word.

4. Show all documents that mention the Swedish word avstånd (distance) or its synonyms in

some form. (We order the titles in the alphabetical order to make it easier to compare the
query results in this section.)

SELECT title
FROM paper
WHERE db2tx.contains(linghandle, 'SYNONYM FORM OF SWEDISH "avstånd"') = 1
ORDER BY title

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 20 -

5. If we now want to check only some specific synonyms like distans, avstånd and håll but
not the rest of the synonyms, it is favourable to use the logical operator OR (|):

SELECT title
FROM paper
WHERE db2tx.contains(linghandle, 'SWEDISH "avstånd" | SWEDISH "distans" | SWEDISH
"håll"') = 1
ORDER BY title

Please note that the paper “RPC-tekniker…” is not included in this result because it does not
contain any of our three synonyms. The reason why this document passed the condition in the
query 4 is that it contains the word intervall which is another synonym of the word avstånd.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 21 -

Another possibility that exists is to check whether two or more subconditions are fulfilled in
the same sentence or paragraph:

6. Show the papers that contain the English words computer and internet in the same

sentence! This can be done with the following query:

SELECT title
FROM paper
WHERE db2tx.contains(linghandle, 'US_ENGLISH "computer" IN SAME SENTENCE
AS US_ENGLISH "internet" ') = 1

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 22 -

7. Now show the papers that contain the English words computer and internet in the same
paragraph instead! (So that we really can see there is a difference!)

SELECT title
FROM paper
WHERE db2tx.contains(linghandle, 'US_ENGLISH "computer" IN SAME PARAGRAPH
AS US_ENGLISH "internet" ') = 1

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 23 -

8. We can also check the following: Which papers have the word experiment (or an
inflection of it) and synonyms of the words fail and crash in the same paragraph.

SELECT title
FROM paper
WHERE db2tx.contains(linghandle, 'US_ENGLISH "experiment" IN SAME PARAGRAPH
AS SYNONYM FORM OF US_ENGLISH "fail" AND SYNONYM FORM OF US_ENGLISH
"crash"') = 1

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 24 -

If you’d like to search for a word that you are not quite sure of how it is spelled, you could
use the keyword SOUNDS LIKE:

9. Find all documents that contain at least 5 occurrences of words that sound like the English

word bay!

SELECT title
FROM paper
WHERE DB2TX.no_of_matches(prechandle, 'SOUNDS LIKE US_ENGLISH "bay"') > 4

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 25 -

You can use the function DB2TX.rank in order to get the database management system to
calculate a ranking value per document according to a condition:

10. Retrieve all documents that contain the English word table and rank the documents

according to relevance to the word database!

SELECT title, INTEGER(DB2TX.rank(linghandle, 'SYNONYM FORM OF US_ENGLISH
"database"') * 100) AS "relevans"
FROM paper
WHERE DB2TX.contains(linghandle, 'US_ENGLISH "table"') = 1
ORDER BY 2 desc

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 26 -

Last, but not least we can look at an example with the use of wild-cards:

11. Show all documents that contain some word that ends with the Swedish word arbete!

SELECT title
FROM paper
WHERE DB2TX.contains(linghandle, 'SWEDISH "%arbete"') = 1

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 27 -

12. Show all documents that contain an abbreviation of three letters that end with ML!

SELECT title
FROM paper
WHERE DB2TX.contains(prechandle, 'SWEDISH "_ML"') = 1

(Two of them contain XML and one DML!)

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 28 -

Queries that combine all types of queries
1. Which authors have written a paper in Swedish that contains the Swedish word

prestanda? Sort by name!

SELECT DISTINCT aname
FROM paper, author
WHERE paper = id
AND language = 'Swedish'
AND DB2TX.contains(linghandle, '"prestanda"') = 1
ORDER BY 1

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 29 -

2. For each author, show the name and the amount of times this author has used the Swedish
word jämföra (in some inflected form) in Swedish papers! Authors that have not used this
word should not be shown in the result. The author that has used the word most should be
shown first. If more than one author has used the word equal amount of times they should
be sorted on name.

SELECT aname AS "Name", SUM(DB2TX.no_of_matches(linghandle, 'SWEDISH "jämföra"'))
AS "Number of uses"
FROM paper, author
WHERE paper = id
AND language = 'Swedish'
GROUP BY aname
HAVING SUM(DB2TX.no_of_matches(linghandle, 'SWEDISH "jämföra"')) > 0
ORDER BY 2 DESC,1

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 30 -

When something has gone wrong
Here is a list of commands that you can use to undo the changes in the database when
something goes wrong:

Use this command To undo the following command
TXSTOP TXSTART
DISCONNECT CONNECT TO <database>
DISABLE DATABASE ENABLE DATABASE
DISABLE TEXT COLUMN <table>
 HANDLE <handle>

ENABLE TEXT COLUMN <table> <column>
 HANDLE <handle> INDEXTYPE <indextype>

For more information you can write ? in DB2TX Command Line Processor:

Assignments

The following assignments should be solved and then sent in to the conference "RELDES
Assignments" together with the execution results.

1. Which documents (the title of the papers) contain the Swedish words Internet or hårddisk

and not the words intranet or databas?

2. Retrieve the title of papers that contain an exact correspondence to the Swedish word

dator (i.e. inflected forms of the word such as datorer, datorn etc are not valid) and whose
title contains the word och.

3. Which Swedish papers (titles) are written after 1999 and contain the word term? Show

only the papers that have been written by at least 2 authors!

4. Show all papers that contain at least 3 occurrences of synonyms of the word population

and that have the word (the synonym) in the same paragraph as the word kunskap.

5. Which documents are at least as relevant to the word teknik (or inflections of it) as the

average value for Swedish documents that contain the exact word protokoll and the exact
phrase höga krav? Show the title, year and amount of authors! In other words: If Swedish
documents that contain protokoll and höga krav have a average relevance to the word
teknik of value X, then the final result should contain documents that have a higher
relevance to the word teknik than X.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 31 -

Reference materials

Specifying search arguments
Search arguments are used in CONTAINS, NO_OF_MATCHES and RANK. This section
uses the CONTAINS function to show different examples of search arguments in UDFs.

Searching for several terms
You can have more than one term in a search argument. One way to combine several search
terms is to connect them together using commas, like this:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
 '("compress", "compiler", "pack", "zip", "compact")') = 1

This form of search argument finds text that contains any of the search terms. In logical terms,
the search terms are connected by an OR operator.

Searching with the Boolean operators
Search terms can be combined with other search terms using the Boolean operators "&"
(AND) and "|" (OR). For example:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
 '"compress" | "compiler"') = 1

You can combine several terms using Boolean operators:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
 '"compress" | "compiler" & "DB2"') = 1

If you use more than one Boolean operator, Text Extender evaluates them from left to right,
but the logical AND operator (&) binds stronger than the logical OR operator (|). For
example, if you do not include parentheses,
 "DB2" & "compiler" | "support" & "compress"
is evaluated as:
 ("DB2" & "compiler") | ("support" & "compress")

So in the following example you must include the parentheses:
 "DB2" & ("compiler" | "support") & "compress"

If you combine Boolean operators with search terms chained together using the comma
separator, like this:
 ("compress", "compiler") & "DB2"
the comma is interpreted as a Boolean OR operator, like this:
 ("compress" | "compiler") & "DB2"

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 32 -

Searching for variations of a term
If you are using a precise index, Text Extender searches for the terms exactly as you type
them. For example, the term media finds only text that contains "media". Text that contains
the singular "medium" is not found.

If you are using a linguistic index, Text Extender searches also for variations of the terms,
such as the plural of a noun, or a different tense of a verb. For example, the term drive finds
text that contains "drive", "drives", "driving", "drove", and "driven":

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
 'PRECISE FORM OF "utility"') = 1

By contrast, this example finds occurrences of "utility" and "utilities":

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
 'STEMMED FORM OF "utility"') = 1

Searching for parts of a term (character masking)
Masking characters, otherwise known as "wildcard" characters, offer a way to make a search
more flexible. They represent optional characters at the front, middle, or end of a search term.
They increase the number of text documents found by a search.

Tip
If you use masking characters, you cannot use the SYNONYM FORM OF keyword.

Masking characters are particularly useful for finding variations of terms if you have a precise
index. If you have a linguistic index, many of the variations found by using masking
characters would be found anyway.

Note that word fragments (words masked by wildcard characters) cannot be reduced to a base
form. So, if you search for passe%, you will not find the words "passes" or "passed", because
they are reduced to their base form "pass" in the index. To find them, you must search for
pass%.
Text Extender uses two masking characters: underscore (_) and percent (%):

• % represents any number of arbitrary characters. Here is an example of % used as
a masking character at the front of a search term:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"%name"') = 1

This search term finds text documents containing, for example, "username", "filename", and
"table-name". % can also represent a whole word. The following example finds text
documents containing phrases such as "graphic function" and "query function":

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 33 -

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"% function"') = 1

• _ represents one character in a search term. The following example finds text
documents containing "CLOB" and "BLOB":

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"_LOB"') = 1

Searching for terms that already contain a masking character
If you want to search for a term that contains the "%" character or the "_" character, you must
precede the character by a so-called escape character, and then identify the escape character
using the ESCAPE keyword. For example, to search for "10% interest":

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"10!% interest" ESCAPE "!"') = 1

The escape character in this example is "!".

Searching for terms in any sequence
If you search for "hard disk" as shown in the following example, you find the two terms only
if they are adjacent and occur in the sequence shown, regardless of the index type you are
using.

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '"hard disk"') = 1

To search for terms in any sequence, as in "data disks and hard drives", for example, use a
comma to separate the terms:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE, '("hard", "disk")') = 1

Searching for terms in the same sentence or paragraph
Here is an example of a search argument that finds text documents in which the search terms
occur in the same sentence:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
 '"compress" IN SAME SENTENCE AS "decompress"') = 1

You can also search for more than two words occurring together. In the next example, a
search is made for several words occurring in the same paragraph:

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 34 -

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
 '"compress" IN SAME PARAGRAPH AS "decompress"
 AND "encryption"') = 1

Searching for synonyms of terms
For a linguistic or a dual index, you can make your searches more flexible by looking not only
for the search terms you specify, but also for words having a similar meaning. For example,
when you search for the word "book", it can be useful to search also for its synonyms. To do
this, specify:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
 'SYNONYM FORM OF "book"') = 1

When you use SYNONYM FORM OF, it is assumed that the synonyms of the term are
connected by a logical OR operator, that is, the search argument is interpreted as:
 "book" | "article" | "volume" | "manual"

The synonyms are in a dictionary that is provided with Text Extender. The default dictionary
used for synonyms is always US_ENGLISH, not the language specified in the text
configuration settings.

You can change the dictionary for a particular query by specifying a different language. Here
is an example:

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
 'SYNONYM FORM OF UK_ENGLISH "programme"') = 1

Tip
You cannot use the SYNONYM keyword if there are masking characters in a search term, or if
NOT is used with the search argument.

Making a linguistic search
Text Extender offers powerful linguistic processing for making a search based on the search
terms that you provide. The linguistic functions are applied when the index is linguistic.

An example of this is searching for a plural form, such as "utilities", and finding "utility". The
plural is reduced to its base form utility, using an English dictionary, before the search begins.
The English dictionary, however, does not have the information for reducing variations of
terms in other languages to their base form. To search for the plural of a term in a different
language you must use the dictionary for that language.

If you specify GERMAN, for example, you can search for "geflogen" (flown) and find all
variations of its base form "fliegen" (fly) – not only "geflogen", but also "fliege", "fliegt", and
so on.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 35 -

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
 'STEMMED FORM OF GERMAN "geflogen"') = 1

Tip
When searching in documents that are not in U.S. English, specify the language in the search
argument regardless of the default language.

If you always specify the base form of a search term, rather than a variation of it, you do not
need to specify a language.

To understand why, consider what happens when the text in your database is indexed. If you
are using a linguistic index, all variations of a term are reduced to their base form before the
terms are stored in the index. This means that, in the DB2TX.SAMPLE table, although the
term "decompress" occurs in the first entry in the COMMENT column, "decompression"
occurs in the second entry, the index contains only the base form "decompress" and identifies
this term (or its variations) as being in both entries.

Later, if you search for the base form "decompress", you find all the variations. If, however,
you search for a variation like "decompression", you cannot find it directly. You must specify
an appropriate dictionary for the search, so that the variation can first be converted to its base
form.

Searching with the Boolean operator NOT
You can use the Boolean operator NOT to exclude particular text documents from the search.
For example:
 ("compress", "compiler") & NOT "DB2"

Any text documents containing the term "DB2" are excluded from the search for "compress"
or "compiler".

You cannot use the NOT operator in combination with IN SAME SENTENCE AS or IN
SAME PARAGRAPH AS, neither can you use it with SYNONYM FORM OF . You can use
the NOT operator only with a search-primary, that is, you cannot freely combine the &, |, and
NOT operators.

Example of the use of NOT that is not allowed:
 NOT("compress" & "compiler")

Allowed is:
 NOT("compress" , "compiler")

Searching for similar-sounding words
The "SOUNDS LIKE"-search finds words that sound like the search argument. This is useful
when documents can contain words that sound alike, but are spelled differently. The German
name that is pronounced “my-er”, for example, has several spellings.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 36 -

SELECT DATE, SUBJECT
FROM DB2TX.SAMPLE
WHERE DB2TX.CONTAINS (COMMENTHANDLE,
 'SOUNDS LIKE "Meyer"') = 1

This search could find occurrences of "Meyer", "Mayer", and "Maier".

Indexing
An IR-system (information retrieval system) performs searches by matching the search
argument against words that exists in a pre-defined index. It would take way too much time to
sequentially scan through all words in the documents for every search. The index contains
relevant words/terms that have been extracted from the text documents and every word/term
is stored together with information about the documents in which they reside. In this way it is
easy to localize the documents that match the search argument.

By saying relevant words/terms we mean those that are typical for the document. Words that
are not typical for the document (i.e. often occurring words like prepositions and pronouns –
and, is, with, without etc.) will not be indexed. These words exist in a Stop Word List that is
used to filter out irrelevant words before words/terms are stored in the index.

There are different types of indexes that can be used. These affect among other things which
different types of searches that can be performed. The most usual index types are precise,
linguistic, and ngram.

Linguistic index
Before words/terms are stored in an index the documents undergo a linguistic analysis. This is
also done with search arguments before a search. The most important steps in this process can
be divided into four phases:

1. Basic text analysis:

• The text is analyzed so that words that contain non alphanumerical characters will be
stored in the index as one term (e.g. ”mother-in-law”, ”$12,234”).

• Upper-case letters are changed to lower-case letters (e.g.”About” is changed to

”about”).

• The text of the document is analyzed to identify where each sentence starts and ends.
This is done so that searching for occurrences of terms within the same sentence can
be performed.

2. Reduction to base form: All words are transformed into base form.

3. Decomposition: Compound words (e.g. “sometime”) are indexed in their entirety, but

also as their elements (“some” and “time”).

4. Stop-word filtering: Irrelevant words are filtered out by comparing the document text or

search argument with a Stop Word List containing often occurring words.

Below you’ll find a summarization of the indexing process for a linguistic index.

DSV TextExtender for DB2 v8.2 nikos dimitrakas
SU/KTH *62/2i1056/2i1071/2i4110 autumn term 2005 Mårten Lundgren

- 37 -

Table 1. Term extraction for a linguistic index

Document text Term in index Linguistic processing
Hat Hat Basic text analysis (normalization)
mice
swam
stole

mouse,
swim,
steal

Reduction to base form

butterfly

homebase

butterfly,
butter,
fly,
homebase,
home,
base

Decomposition

A report about Mars report,
Mars

Stop-word filtering. The stopwords are: a, about

Precise index
Words/terms are stored in the index exactly as they occur in the document text. The same
goes for search arguments, i.e. only exact correspondence between the indexed word and the
search argument results in a match. The advantage with this type of index is that matching
becomes more precise and that indexing and searching is faster.

The process of indexing and searching with this type of index contains the following phases:

• Word and sentence separation. Words and sentences are identified by analysis.
• Stop-word filtering.

Below you’ll find a summarization of the indexing process for a precise index.

Table 2. Term extraction for a precise index

Document text Term in index Linguistic processing
Hat Hat No normalization
mice
swam
stole

Mice,
Swam,
stole

No reduction to base form

butterfly
homebase

Butterfly,
homebase

No decomposition

A report about Mars report,
Mars

Stop-word filtering. The stopwords are: a, about

