DEPARTMENT OF COMPUTER
AND SYSTEMS SCIENCES
SU/KTH

QUERYING XML DATA
WITH XQUERY

v. 1.0

I54/2i1242/2i4042

Models and languages for object,
relational and web databases

Spring Term 2006

Rafael Cordones Marcos <rafa@div.su.4e>

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

Table of contents

I LT oo [Tod o] o USSPV 3
p O 1§15 (o TSROSO 3
K e L] o] (= = - USSR RSSO 4
4 XQUETY ettt ekttt ek e e k£ e e R e e Rt e R e £ ekt e oA R e e R e e eRb e e Re e eR bt e be e eRneenneennneereens 5}
4.1 DA MOUEI ... bbbttt bbbt 5
4.2 Serialization and Deserialization of XML DOCUMENTS........c.cccvviierieiiiiieiineeie e 5
4.3 XPAth EXPIESSIONS ...c.veiiiiiiieeiie et e st st st se et te et e st e e sae e teesteesaeesneesneesnteanaeenbeenteeneeenneens 6
4.4 Iteration and Variable Declaration (FLWOR €XPreSSIiONS)........ccccoveviervieeiieesiiesieeneeesieesenesenens 7
4.5 XQuery and XPath Functions and OPeratorS...........ccooeieeieienieeiese e 8
5 Example QUEries EXPIAINEMcc.ooiiiiiiiiicce e 9
5.1 Query 1: Basic XPath EXpressions and LOOPSccccoiiriiiniiinieneieeeese st 10
5.2 Query 2: Predicates in XPath eXpressions (1)cocooveeoeiie i 13
5.3 Query 3: Predicates in XPath eXpressSions (2)cccccvviiieeieeiee e see e ese s se e e e snne s 14
5.4 Query 4: Using FUNCLIONS IN QUETIESc.veviiiieiiicieiie ettt ettt sre s 14
5.5 Query 5: Renaming Attribute Names in the Result.............ccooiiiiiiiii e 15
5.6 Query 6: Subqueries and Variable Declarationccccccvvevieiiiiin s 16
5.7 Query 7: Adding Constraints with @a WHERE ClaUSeccccccoiveiiiiiieieie e 19
5.8 Query 8: Conditionals (if — then — €1SE)cciiiiiiiiice e 21
5.9 Query 9: Attribute Creation with the attribute Keywordccccooviiiiininiiiicnens 24
5.10 Query 10: JOINING tWO STFUCTUIESccveieiieeeicie sttt sttt e e sbe st saesreenaesrenre s 28
5.11 Query 11: Queries from more than one XML SOUFCEccccveierieiiiii e 29
5.12 Query12: Query Based on the Name of Nodes (Labels)ccccooveiiiiiniiniiiieie e 33
ORI [0] 0 1T £SO 35
T EPHOQUE ...ttt b bbbt st b et e et et ne e beeeenneenrs 36
B RETEIEINCES. ...ttt bbbttt b bbb 36
9 Appendix I: JEdit’s Advanced Text EdItOr (8Xe)ccovvereririieieiie e 36

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

1 Introduction

This document is a brief introduction to XQuery, a query language for querying XML data. It
is based on the article XQuery: An XML query language [1] but contains examples that will
relate XQuery to other query languages you have seen in this course.

The main contents of this document are:

An very brief introduction to XQuery

An introduction to the tool we will use: XQuisitor

Examples and exercises on using XQuery for querying XML data
A set of assignments you will have to solve and send in

It is strongly recommended that you study the article in reference [1] (especially pages 597
to 609) which you can find on the “Articles & Excerpts” compendium, “XQuery: An XML
query language”’. Throughout this document we will make references and use concepts found
in that article. You will therefore not be able to understand this document without having
studied the article first. It is also recommended that you read through this entire document
before starting to work with the exercises.

To understand the contents of this compendium you also need to have an understanding of
XML and related concepts like: XML elements, XML attributes, data definition documents
(DTDs), well-formed XML documents, valid XML documents, URLS, URIs, ... You can find
this information on the introduction to XML that we provide in the XML & DB2
compendium.

2 XQuisitor

XQuisitor is a simple GUI written in Java that allows the user to evaluate XQuery
expressions. It’s free software [4] so you can download a binary distribution as well as the
source code of the application. XQuisitor is already installed in the prepared disks. You can
access it by going to the Windows menu Start » Programs » XQuery » XQuisitor.

On the next page, XQuisitor’s GUI is shown. We provide an explanation of the different parts
of the GUI:

Menu (File, Edit, Query): provides the standard capabilities for loading, saving and printing
queries, XML data files and query results.

Base URI: here you can select the Universal Resource Identifier (URI) that will be added as a
prefix to relative URIs you use in your queries. The URI you choose here will almost always
be a directory in your local disk, but you could also use a URL. We can use an example to
make this functionality more clear. If you write in a query the function
doc(“books.xml””) (we will explain later what this function does), XQuisitor will
prepend to ““books.xml”” the URI indicated in Base URI before trying to open the
books.xml file. So if, the Base URI textbox contains “file:/D:/labs/xquery/”

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

and you use the function doc(“books.xml’”) then XQuery will actually use
doc(“file:/D:/1abs/xquery/books.xml’").

Context: in this textbox you can indicate which XML file you want to use for your queries.
You can think of the context of a query as the XML input data.

Query area: you write your queries in this textbox.
Query result: you get the results of the query execution in this textbox. By selecting Pretty

Print you will get the result indented. If you select Wrap, the result will be wrapped in an
XML schema.

File Edit Querny Help

IUetsy

Base URI: I

Context: I |

[irap
[v Pretby Print

Run Quety |

Query Result

Kl | i

3 Example data

We provide you with four files books.xml, books.dtd, publishers.xml and
publishers.dtd that we will us during the examples in this document. You can find the
files at the location:

\\Db-srv-1\StudentCourseMaterial\I1S4 spring 2006\XQuery\Books.

Have a look at these files so you can see what kind of data they contain before proceeding
with the example queries. For most of the examples we will use only the file books . xml.

We also prove example data files for following the examples given in the article in reference
[1] which you can find on the “Articles & Excerpts” compendium, “XQuery: An XML query
language”. You can find these files in:

\\Db-srv-1\StudentCourseMaterial\154 spring

2006\XQuery\Auctions.

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,

Rafael Cordones Marcos relational and web databases

4 XQuery

This chapter builds on the article “XQuery: An XML query language” which you can find in
reference [1] and in the “Articles & Excerpts” compendium. We will briefly highlight some
of the most important aspects of XQuery but you will need to study the article in order to
understand XQuery and the rest of this document.

XQuery is a language focused on information retrieval from XML data. The result of
evaluating an XQuery expression is not always a well-formed XML document. In XQuery
you can have a query like

let $a = 3, $b = 5
return $a * $b

Which, when evaluated, would return the value 8.

XQuery keywords and case-sensitive which means that “where” is a correct XQuery
keyword while “WHERE” is not.

4.1 Data Model

XQuery’s data model is explained thoroughly in pages 598 to 600 in the article. It is
recommended, that before you go through the explanation of the example queries included in
Chapter 5, you draw a representation of the file XML data in the file books . xml.

XML data is made of nodes and each node can be of several kinds, of which, element,
attribute and text are the ones that concern us most. The following XML data, for instance,

<?xml version="1.0" encoding="UTF-8"?>
<Book Title="Database Systems in Practice™ OriginallLanguage="English"
Genre="Educational>
<Author Name="Alan Griff" Email="ag@mit.edu" YearOfBirth="1972"
Country="USA"/>
</Book>

consists, of two element nodes:
e Book with attribute nodes Title, OriginalLanguage and Genre
e Author with attribute nodes Name, Emai I, YearOfBirth and Country.

Each of the attribute nodes has a text node containing the contents of the attribute. For
example, the attribute node Genre has a text node with the text Educational as its
content.

4.2 Serialization and Deserialization of XML Documents

Serialization and deserialization is a very important concept in computer science and you have
probably met it before with a different name. Serialization [5] is the process by which a data
structure residing in memory is stored in a persistent medium. Usually, in the domain of
programming languages (like Java) this data structure is an object or a graph of objects.

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

Serializing the object, means storing it on disk (usually in a file). In the XML domain, we
serialize XML which resides in memory to an XML file. Deserialization is then the inverse
process, taking an XML file and building a representation of it in memory.

4.3 XPath Expressions

XQuery builds on XPath, which is a language for selecting parts of XML documents. You
will almost always use an XPath expression in your queries. Their main purpose is to select
nodes from the input XML data.

An XPath expression starts with the slash character “/”” which indicates the root of the input
XML document. Every slash in the expressions indicates a next step and the result of each
step is a sequence of nodes. The character “@” (pronounced “at”) is used to select an
attribute.

Examples (using the books . xml file as a context for the query):

e The expression “//Book” evaluates to a sequence of nodes with all the Book elements.
We use two slashes because we want to step over the first element, which is
BookCol lection.

o “//Book/@Title” evaluates to a sequence of attribute nodes Title.

XPath expressions are case-sensitive, so “//Book/@Tithe” will return the desired values
while the expressions “//Book/@title”, “//book/@Title” or “//book/@title”
will not.

We use predicates in XPath expressions to select nodes from the input XML data. Predicates
are written between brackets “[]”. So to select the authors born after 1950 we would write
the expression “//Author[@YearOfBirth > 1950]”. And to select only the name of
those authors we would write “//Author[@YearOfBirth > 1950]/@Name”.

To navigate the nodes of an XML document, we use the characters “. .” and “.” to indicate
the parent node and current node respectively. Much as we do when navigating the file system
in our computer. Continuing with the previous example, if we would like to find the title of
the books with authors born after 1950 we would write the expression
“//Author[@YearOfBirth > 1950]/../@Title”.

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

4.4 lteration and Variable Declaration (FLWOR expressions)

We just finished the last section with the expression “//Author[@YearOfBirth >
1950]/../7/0aTitle”. This expression evaluates to a sequence of attribute nodes so if you
try to evaluate it you will get an error because they are attribute nodes and not element nodes.
An XML document is made up of element nodes and thus the result of the previous query
cannot be serialized into an XML document.

We would need to loop over the sequence of attribute nodes and convert each of them to an
element node. A FLWR (from for-let-where-order-return, pronounced “flower”
expression will do the trick! The for clause loops through each of the elements in a
sequence:

for $t in //Author[@YearOfBirth > 1950]/../0@Title
return <Book>{ $t }</Book>

The et clause assigns a value to a variable for each of the elements in the For clause:

for $b in //Author[@YearOfBirth > 1950]/..
let $t = $b/@Title
return <Book>{ $t }</Book>

and the return clause constructs the resulting element. We can optionally sort the results by
title with the order by clause:

for $b in //Author[@YearOfBirth > 1950]/..
let $t = $b/@Title

order by $t

return <Book>{ $t }</Book>

The difference between for and let clauses is that while the for clause binds the variable
to each of the elements in the sequence, the let clause binds the variable only once. Using a
different example, in which we want to retrieve the books and their translations

for $b in //Book
let $t := $b//Translation
return <Book> { $b/@Title , $t } </Book>

the variable $b is bound to each one of the books in the resulting sequence of evaluating the
XPath expression //Book. For each of those books, the variable $t is bound to all the
translations of the given book.

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

4.5 XQuery and XPath Functions and Operators

XQuery provides a fairly good amount of operations and functions. It is even possible to
define your own functions. In this section we provide a brief summary of some of the most
commonly used functions some of which we will use in the examples in Chapter 5. Refer to
reference [3] to find the complete list and explanation. Remember that XQuery and XPath are
case-sensitive languages!

Returns the XML data contained in the file or resource
indicated by the URI.
distinct-values(s) Removes duplicates from sequence s

doc(URI)

data() Evaluates to the contents of a text node.

name() Evaluates to the name of a node.

starts-with(sl,s2) String function. Evaluates to true if string s1 starts with
string s2.

count(s) Sequence function. Evaluates to an integer that indicates the
amount of elements in sequence s.

min(Q), max(), Functions that operate on sequences.

sumQ), avgQ

not(exp) Boolean function that inverts the value of the

concat(sl, s2) Function that concatenate two sequences or strings.

empty(s) Function that returns true if s contains no elements.

exists(s) Function that returns true if s is not empty.

matches(s, regexp) Evaluates to true when the regular expression regexp
matches the string s.

For the complete list of core functions and operators in XPath and XQuery see [3] or visit the
quick reference at http://www.w3.0rg/TR/xpath-functions/#quickref.

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

5 Example Queries Explained

During the following example queries we will always want one XML document as a result of
our query. Remember that the result of an XQuery query is a sequence of XML nodes and
when this sequence of nodes is serialized to XML, each node will be treated as an XML
document. Thus, the query

//Book

will return the following result:

<?xml version="1.0" encoding="UTF-8"?7>
<Book Title="Misty Nights" OriginalLanguage="English” Genre="Thriller'>
<Author Name="John Craft" Email="jc@jc.com" YearOfBirth=''1948"
Country="England"/>

</Book>
<?xml version="1.0" encoding="UTF-8"?>
<Book Title=""Archeology in Egypt" OriginallLanguage="English"
Genre="Educational">
<Author Name="Arnie Bastoft" Email=""bastoft@frei.at"”
YearOfBirth=""1971" Country="Austria”/>

</Book>
<?xml version="1.0" encoding="UTF-8"?>
<Book Title=""Database Systems in Practice”™ OriginallLanguage="English"
Genre="Educational'>
<Author Name="Alan Griff" Email="ag@mit.edu" YearOfBirth="1972"
Country="USA"/>

</Book>
<?xml version="1.0" encoding="UTF-8"?7>
<Book Title="Contact™ OriginalLanguage="English' Genre="Science Fiction">
<Author Name="Carl Sagan'" Email="carlsagan@nasa.gov"
YearOfBirth="1913" Country="USA"/>

</Book>

<?xml version="1.0" encoding="UTF-8"?>

<Book Title="The Fourth Star"™ OriginalLanguage="English"
Genre="'Science Fiction">

</Book>

As you can see, we get an XML document for each book. In the following examples, we will
want one XML as a result of a query. Thus, we will surround each query with the result
element. Like in

<result>
{ //Book }
</result>

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,

Rafael Cordones Marcos relational and web databases

We also make use of the “...” symbol to indicate that there is more XML data that we do not

show since it is not relevant to our discussion.

Some of the following example queries are the same examples you can find in the XML DB2
compendium. This way you can learn by comparing different ways of doing the same thing
but bear in mind that in the XML DB2 laboratory assignment you are learning how to query
XML data that is stored in XML documents stored in a relational database whereas now we
are dealing with XML data stored natively. Learning new things by relating them to things
you already know is one of the best-proven methods of learning.

Please, before reading the example queries and the explanation, study the previous chapters
and study the article in reference [1] which you can find on the “Articles & Excerpts”
compendium.

5.1 Query 1: Basic XPath Expressions and Loops

What are the titles of all the books?
A first approach to solving this query would be to create an XPath expression that would
return the desired values from the attribute Title of the element Book.

With the following expression

<result>
{ //Book }
</result>

we obtain a sequence of Book elements:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Book Title="Misty Nights"™ OriginalLanguage="English' Genre="Thriller'>
<Author Name="'John Craft"™ Email=jc@jc.com
YearOfBirth=""1948" Country="England"/>
<Edition Year='"1987" Price="120">
<Translation Language="'German'" Publisher="Kingsly"
Price="130"/>
<Translation Language="French”™ Publisher="Addison"
Price="135"/>
<Translation Language="Russian' Publisher="Addison"
Price="125"/>
</Edition>
</Book>
<Book Title="Archeology in Egypt" OriginallLanguage="English"
Genre="Educational">
<Author Name=""Arnie Bastoft" Email=""bastoft@frei.at"
YearOfBirth=""1971" Country="Austria"/>
<Author Name="Meg Gilmand"™ Email="megil@archeo.org"
YearOfBirth=""1968" Country="Australia'/>
<Author Name="Chris Ryan" Email="chris@egypt.eg" YearOfBirth='1944"
Country="France"/>
<Edition Year='"1992" Price="250">
<Translation Language="Swedish" Price="340" Publisher="N/A"/>
<Translation Language="French" Price="320" Publisher="N/A"/>

10

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases
</Edition>
;7result>

But we want only the contents of the attribute Title! We can try the following XPath
expression:

<result>
{ //Book/@Title }
</result>

But we will get

<?xml version="1.0" encoding="UTF-8"?>
<result Title="Le chateau de mon pere"/>

This happens because, as we mentioned earlier, XPath expressions can only select nodes or
attributes from the input XML data and cannot create new nodes. Besides that, the result of
an XQuery expression is always a sequence of nodes of type Element or Document. This
means that we need to build a node out of the contents of the Title attribute:

<result>
<title> { //Book/@Title } </title>
</result>

With this query you will get only one result:

<?xml version="1.0" encoding="UTF-8"?>
<result>

<title Title="Le chateau de mon pere"/>
</result>

This is how it would look if you run the query in XQuisitor:

4. X Quisitor
File= Edit Query Help
Iuery
<result> &wum:l ~-|

<titlex { //Book/dTitle } </title> Context: fhile; iD:flab/xqueryibocks <l o |
</result> I wirap

[V Bretty Print
Run Query |

Iuery Result

<?xml wversion="1.0" encoding="UTF-8%"?>
<result>

<title Title="Le chateau de mon pere™/>
</result>

« | of

11

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

If you look at the XML database (in the file books.xml) you will see that this title
corresponds to the last book in the collection. This happens because the XPath expression
//Book/@Title results in a sequence of nodes of type Attribute and all the nodes have the
same attribute name, .i.e. Title. Therefore, when serializing the XML document to produce
the result, only the last value of the attribute is taken.

To solve this query we need to loop through all the Book elements and return the contents of
the Ti1tle attribute. With the following query:

<result>

{
for $b in //Book
return <title> { $b/@Title } </title>

}

</result>

We obtain

<?xml version="1.0" encoding="UTF-8"?>
<result>
<title Title="Misty Nights"/>
<title Title="Archeology in Egypt"/>
<title Title="Database Systems in Practice"/>
<title Title="Contact"/>
<title Title="The Fourth Star'/>
<title Title="Varen vid sjon"/>
<title Title="Dodliga Data"/>
<title Title=""Music Now and Before'/>
<title Title=""Midsommar i Lund"/>
<title Title="Encore une fois'/>
<title Title="European History"/>
<title Title="Musical Instruments'/>
<title Title="0Oceans on Earth'/>
<title Title="The Beach House'/>
<title Title="Le chateau de mon pere"/>
</result>

We are one step nearer our target but as you can see from the result, we have title elements
with a Title attribute. This happens because in the return part of our query we have
selected the attribute but not the contents of the attribute! We can do this with the built-in
data() function:

<result>

{
for $b in //Book

return <title> { data($b/@Title) } </title>
e

</result>

And we finally obtain:

12

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

<?xml version="1.0" encoding="UTF-8"?>
<result>
<title>Misty Nights</title>
<title>Archeology in Egypt</title>
<title>Database Systems in Practice</title>

</résult>
How would we sort the titles? Using the order by clause

<result>

{

for $b in //Book

order by data($b/@Title)

return <title> { data($b/@Title) } </title>

}
</result>
will yield:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<title>Archeology in Egypt</title>
<title>Contact</title>
<title>Database Systems in Practice</title>

</result>

By default, the ordering is that of the English language but it is possible to order strings
according to the order of the letters of other languages. In the Swedish alphabet, for instance,
the letters “a”, “a” and “0” go after “z” and thus it might be necessary for you to specify a
collation. ““A collation is a specification of the manner in which character strings are
compared and, by extension, ordered” [2]. This means that if we want to order the previous
list using the Swedish collation we will need to indicate this in the order by clause using
the col lation keyword in the order by clause:

<result>

{
for $b in //Book

order by data($b/@Title) collation sv”
return <title> { data($b/@Title) } </title>

}
</result>
Which will yield the same results in this case.

5.2 Query 2: Predicates in XPath expressions (1)
Which are the authors of the second book in the database?

13

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

To solve this query we need to create an XPath expression with a predicate that will filter out
all the Book element nodes except for the second:

<result>
{ //Book[2]/Author }
</result>

As you can see, a predicate containing only a number, evaluates to true when the predicate is
evaluated with the node in the sequence that occupies the position represented by that
number. In the aforementioned example, the predicate [2] evaluates to true when the second
node is evaluated and thus it is the only one that is returned.

5.3 Query 3: Predicates in XPath expressions (2)

Which are the authors of the book with the title “Archeology in Egypt”?

To solve this query we need to create an XPath expression with a predicate that will filter out
all the Book element nodes except for the one we are interested. Remember that predicates in
XPath expressions can only remove nodes from the result:

<result>
{ /7/Book[@Title = "Archeology In Egypt'']/Author }
</result>

Results in:
<?xml version="1.0" encoding="UTF-8"?>
<result>
<Author Name="Arnie Bastoft" Email="bastoft@frei.at"
YearOfBirth="1971" Country="Austria"/>
<Author Name="Meg Gilmand" Email="megil@archeo.org"
YearOfBirth=""1968" Country=""Australia'/>
<Author Name="Chris Ryan™ Email="chris@egypt.eg"
YearOfBirth=""1944" Country="France'/>
</result>

5.4 Query 4: Using functions in queries

How many authors are there in the database?
To solve this query we will use a function that given a sequence of nodes, returns the amount
of nodes in the sequence.

<result>
count(//Book/Author)
+

</result>

Which gives the following result:

<?xml version="1.0" encoding="UTF-8"?>
<result>31</result>

14

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

But this would not solve the question since the same author can appear in many books. We
need to remove duplicate values from the sequence of author elements. We do it with the
function distinct-values() and we need to use the Name attribute of the Author
element since the actual content of the Author element is empty:

<result>

{
by

</result>

count(distinct-values(//Book/Author/@Name))

Which gives the result:

<?xml version="1.0" encoding="UTF-8"?>
<result>29</result>

5.5 Query 5: Renaming Attribute Names in the Result

List all the titles and original language for all the books! Sort the results by language and
then by title!
We can return the result using only XML elements with the query

<result>

{
for $b in //Book
order by $b/@0riginalLanguage, $b/@Title
return <Book>
<Title>{ data($b/@Title) }</Title>
<Language>{ data($b/@OriginalLanguage) }</Language>
</Book>

+

</result>
which gives:

<?xml version="1.0" encoding=""UTF-8"?>
<result>
<Book>
<Title>Archeology in Egypt</Title>
<Language>Engl ish</Language>
</Book>
<Book>
<Title>Contact</Title>
<Language>English</Language>
</Book>
<Book>
<Title>Database Systems in Practice</Title>
<Language>Engl ish</Language>
</Book>

</result>

15

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

Or only with attributes with the same name as in the input XML data (OriginalLanguage
instead of Language):

<result>

{

for $b in //Book

order by $b/@0riginalLanguage, $b/@Title

return <Book> { $b/@Title, $b/@0riginalLanguage } </Book>
}

</result>

giving the result

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Book Title=""Archeology in Egypt" OriginalLanguage="English"/>
<Book Title="Contact™ OriginallLanguage="English"/>
<Book Title="Database Systems in Practice" OriginalLanguage="English"/>

</résult>
Or with attributes with a different name than in the input XML data:

<result>

{
for $b in //Book

order by $b/@Language, $b/@Title
return <Book Title = "{ $b/@Title }"

Language = ”{ $b/@OriginalLanguage }’/> }
</result>

which gives:
<?xml version="1.0" encoding="UTF-8"?>
<result>
<Book Title=""Archeology in Egypt" Language="English"/>

<Book Title="Contact™ Language="English"/>
<Book Title="Database Systems in Practice'" Language="English"/>

</result>

5.6 Query 6: Subqueries and Variable Declaration

How many books of each genre are there?

This is the first example in which we will use an aggregate function and the GROUP BY
clause. Recall from SQL the function count(). We will use a function with the same name
to solve this query. We want the result to be ordered by the amount of books and by genre.

First we will write a query that will list all the genres:

16

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,

Rafael Cordones Marcos relational and web databases

<result>

{

for $g in //Book/@Genre
return <Genre Name="{ $g }7’/>

}

</result>

which yields the following result:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Genre Name="Thriller"/>
<Genre Name="Educational'/>
<Genre Name="Educational"/>
<Genre Name="'Science Fiction"/>
<Genre Name="'Science Fiction"/>
<Genre Name="'Novel"/>
<Genre Name="Thriller'/>
<Genre Name="Educational"/>
<Genre Name="'Novel"/>
<Genre Name="'N/A"/>
<Genre Name="Educational"/>
<Genre Name="Educational'/>
<Genre Name="Educational"/>
<Genre Name="'Novel"/>
<Genre Name="'N/A"/>
</result>

But as we can see, we get each genre repeated as many times as there are books with it. We
can use the function distinct-values() to remove repetitions from the result:

<result>

{
for $g in distinct-values(//Book/@Genre)

return <Genre Name="{ $g }’°/>

}

</result>

obtaining the result:

<?xml version="1.0" encoding="UTF-8"?7>
<result>
<Genre Name="Thriller"/>
<Genre Name="Educational'/>
<Genre Name="'Science Fiction"/>
<Genre Name="'Novel'/>
<Genre Name="'N/A"/>
</result>

Now we can build a sub-expression that will list the books of each genre by writing a sub-
expression and by a where clause to connect them:

<result>

{

17

Department of Computer XML & XQuery v. 1.0

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

for $g in distinct-values(//Book/@Genre)
order by $g
return

<Genre Name="{ $g }'">

{
for $b in //Book

where $b/@Genre = $g
return <Book Title="{ $b/@Title }"/>

}

</Genre>

}

</result>

Result:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Genre Name="Educational'>
<Book Title="Archeology in Egypt'/>
<Book Title="Database Systems in Practice"/>
<Book Title="Music Now and Before'/>
<Book Title="European History"/>
<Book Title="Musical Instruments'/>
<Book Title="0Oceans on Earth"/>
</Genre>
<Genre Name="'N/A"">
<Book Title="Encore une fois"/>
<Book Title="Le chateau de mon pere'/>
</Genre>
<Genre Name="Novel'>
<Book Title='"Varen vid sjon"/>
<Book Title="Midsommar i1 Lund"/>
<Book Title="The Beach House"/>
</Genre>
<Genre Name="'Science Fiction'>
<Book Title=""Contact'/>
<Book Title="The Fourth Star'/>
</Genre>
<Genre Name="Thriller'™>
<Book Title="Misty Nights'/>
<Book Title="Do6dliga Data'/>
</Genre>
</result>

Now we only need to count them:

<result>

{

for $g in distinct-values(//Book/@Genre)
order by $g

return

<Genre Name="{ $g }"

AmountOfBooks=""{ count(//Book[@Genre = $g])

18

Stockholm
January 2006

y/>

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,

Rafael Cordones Marcos relational and web databases

s

</result>

Result:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Genre AmountOfBooks="6"" Name="'Educational'/>
<Genre AmountOfBooks="2" Name="'N/A"/>
<Genre AmountOfBooks="3" Name="'Novel'/>
<Genre AmountOfBooks=""2" Name="'Science Fiction"/>
<Genre AmountOfBooks="2" Name="Thriller'/>
</result>

And an even more condensed version of the previous query, using the let clause:

<result>
{
for $g in distinct-values(//Book/@Genre)
let $amount := count(//Book[@Genre = $g])
order by $g
return
<Genre Name="{ $g }" AmountOfBooks="{ $amount }'/>
}

</result>

5.7 Query 7: Adding Constraints with a WHERE Clause

Which authors have written thrillers or science fiction?
To solve this question we start with the first step, i.e. list all the authors:

<result>
{ //Author }
</result>

which gives all the books as result

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Author Name="John Craft"” Email="jc@jc.com”™ YearOfBirth="1948"
Country="England"/>
<Author Name="Arnie Bastoft" Email="bastoft@frei.at"” YearOfBirth="1971"
Country="Austria'"/>
<Author Name="Meg Gilmand"™ Email="megil@archeo.org" YearOfBirth="1968"
Country="Australia"/>
<Author Name="Chris Ryan' Email="chris@egypt.eg"” YearOfBirth="1944"
Country="France"/>

</result>

Now we can modify the previous query to return only the names of the authors ordered by
name:

19

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,

Rafael Cordones Marcos relational and web databases

<result>

{

for $a in //Author

order by $a/@Name

return <Author>{ data($a/@Name) }</Author>
by

</result>

Result:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Author>Alan Griff</Author>
<Author>Alicia Bing</Author>
<Author>Andreas Shultz</Author>

</result>

Now we need to select only the authors that have written a thriller or a science-fiction book,
i.e. the attribute Genre of the Book element has to be “Thriller” or “science
Fiction”.

<result>
{
for $b in //Book, $a in $b/Author
where $b/@Genre “"Thriller™ or
$b/@Genre = "'Science Fiction"
order by $a/@Name
return <Author>{ data($a/@Name) }</Author>
}

</result>

Result:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Author>Carl Sagan</Author>
<Author>Jakob Hanson</Author>
<Author>John Craft</Author>
<Author>Leslie Brenner</Author>
</result>

We have used the where clause to specify the required conditions on the books. Note that that
the $a variable is linked to the $b variable in the for clause, that is, which is similar to a
join between two tables in a relational database.

We can also do this with just one variable and going back to the Book element from the
Author element by using ". .™:

<result>

20

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,

Rafael Cordones Marcos relational and web databases

{

for $a in //Author
where $a/../@Genre

$a/../@Genre
order by $a/@Name
return <Author>{ data($a/@Name) }</Author>
}

</result>

“"Thriller"” or
""Science Fiction"

We can also use an XPath expression with a predicate to do the same:

<result>

{
for $a in //Book[@Genre

@Genre
order by $a/@Name
return <Author>{ data($a/@Name) }</Author>

}

</result>

"Thriller™ or
"Science Fiction']/Author

5.8 Query 8: Conditionals (if —then — else)

Make a list of all the educational books and the authors that have written each book! Show
the book title and the authors’ name and country! Show only authors that are born after
1950!

We begin by listing all the educational books with

<result>

{
for $b in //Book

where $b/@Genre = "Educational™
order by $b/@Title
return <Book>{ $b/@Title }</Book>

}

</result>

and we get

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Book Title=""Archeology in Egypt'/>
<Book Title="Database Systems in Practice"/>
<Book Title="European History"/>
<Book Title="Music Now and Before"/>
<Book Title="Musical Instruments'/>
<Book Title="Oceans on Earth"/>
</result>

We could also have done a similar thing using the following XPath expression:

21

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,

Rafael Cordones Marcos relational and web databases

<result>

{
//Book[@Genre = "Educational']

</result>

But if you try this expression you will see that you get all the contents (attributes) of the
Book element. As mentioned before, an XPath expression evaluates always to a sequence of
nodes and cannot be used to delete parts of those nodes (attributes or sub-elements). Thus we
cannot return parts of the Book element as a result using only an XPath expression.

<result>

{
for $b in //Book[@Genre = "Educational']

return <Book Title="{ $b/@Title }'"> { $b/Author } </Book>
s

</result>

Result:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Book Title="Archeology in Egypt'>
<Author Name="Arnie Bastoft" Email="bastoft@frei.at"
YearOfBirth="1971" Country="Austria"/>
<Author Name="Meg Gilmand"™ Email="megil@archeo.org"
YearOfBirth=""1968" Country="Australia’/>
<Author Name="Chris Ryan" Email="chris@egypt.eg"
YearOfBirth=""1944" Country="France'/>
</Book>
<Book Title=""Database Systems in Practice">
<Author Name="Alan Griff" Email="ag@mit.edu"
YearOfBirth="1972" Country="USA"/>
<Author Name="Marty Faust™ Email="marty@nyu.edu"
YearOfBirth="1970" Country=""USA"/>
<Author Name=""Celine Biceau" Email=""celine.biceau@tok.cn"
YearOfBirth=""1969" Country="Canada'/>
</Book>

</result>

Now we just need to select only the authors born after 1950 and return only the author’s name
and country:

<result>

{
for $b in //Book[@Genre = "Educational']

return <Book Title="{ $b/@Title }'>

{
for $a in $b/Author[@YearOfBirth > 1950]

return <Author> { $a/@Name, $a/@Country } </Author>

}
</Book>

22

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,

Rafael Cordones Marcos relational and web databases

s

</result>

Result:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Book Title="Archeology in Egypt'>
<Author Name="Arnie Bastoft"” Country="Austria'"/>
<Author Name="'Meg Gilmand" Country="Australia"/>
</Book>
<Book Title=""Database Systems in Practice">
<Author Name="Alan Griff" Country=""USA"/>
<Author Name="Marty Faust™ Country="USA"/>
<Author Name="'Celine Biceau" Country="Canada"/>
</Book>
<Book Title="Music Now and Before'>
<Author Name="Mimi Pappas"™ Country="USA"/>
</Book>
<Book Title="European History"/>
<Book Title="Musical Instruments'>
<Author Name="Alicia Bing" Country="Belgium'/>
</Book>
<Book Title="Oceans on Earth'>
<Author Name="Linda Evans' Country="USA"/>
<Author Name="'Chuck Morrisson" Country="England"/>
<Author Name="'Kay Morrisson'" Country="England"/>
</Book>
</result>

Note how we get the book entitled *“European History” with no authors. If we wanted to
discard this book from the result, we could use a conditional expression:

<result>
{
for $b in //Book[@Genre = *"Educational™]
let $authors := $b/Author[@YearOfBirth > 1950]
return it (count($authors) > 0)
then
<Book Title="{ $b/@Title }'>
{
for $a in $authors
return <Author> { $a/@Name, $a/@Country } </Author>

b5
</Book>
else AR A
b5
</result>

which would return the same results as before except for not containing the book entitled
“European History”. We have also defined a variable $authors since we need it twice.
Note that the else part of the if-then-else construct is compulsory, i.e. you cannot
avoid it even if, like in this case, you do not need it

23

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

Another way to do the same without using the if-then-else construct is by using a function in
the where clause:

<result>
{
for $b in //Book[@Genre = "Educational']
let $authors := $b/Author[@YearOfBirth > 1950]
where count($authors) > 0
return <Book Title="{ $b/@Title }">
{
for $a in $authors
return <Author> { $a/@Name, $a/@Country } </Author>

}
</Book>

}

</result>

Another equivalent condition could be this

where not(empty($authors))

5.9 Query 9: Attribute Creation with the attribute Keyword

Show a list of all the authors born before 1940, the amount of book editions they have written
and the amount of different languages each author's books have been translated to! Also show
the average price of the book editions for each author! The result shall have the element
Author with the following attributes: Name, AmountOfEditions, AmountOfTranslations and
AverageEditionPrice. The result shall be sorted by author name!

<result>

{
for $a in //Author[@YearOfBirth < 1940]

order by $a/@Name
return <Author> { $a/@Name } </Author>

}

</result>

Result:

<?xml version="1.0" encoding="UTF-8"?>

<result>
<Author Name="Andreas Shultz"/>
<Author Name="'Carl George'/>
<Author Name="‘Carl Sagan'/>
<Author Name="Christina Ohlsen"/>
<Author Name="Franc Desteille'/>
<Author Name="Kostas Andrianos'/>
<Author Name="Lilian Carrera'/>
<Author Name="'Marie Franksson'/>
<Author Name="Marie Franksson'/>
<Author Name="'Peter Feldon'/>

24

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

<Author Name="'Sam Davis'/>
<Author Name="'Sam Davis'/>
</result>

Note that we get duplicate authors and this is because the same author can appear in several
books. In order to remove the duplicates we can use the distinct-values() function
and the attribute keyword:

<result>

{
for $a in distinct-values(//Author[@YearOfBirth < 1940]/@Name)

order by $a
return <Author> { attribute Name { $a } } </Author>

}

</result>

Result:

<?xml version="1.0" encoding="UTF-8"?>

<result>
<Author Name="Andreas Shultz"/>
<Author Name="'Carl George'/>
<Author Name="‘Carl Sagan'/>
<Author Name="Christina Ohlsen"/>
<Author Name="Franc Desteille'/>
<Author Name="Kostas Andrianos'/>
<Author Name="Lilian Carrera'/>
<Author Name="'Marie Franksson'/>
<Author Name="'Peter Feldon'/>
<Author Name="Sam Davis'/>

</result>

And now that we have eliminated the duplicates we can move on to count the number of
editions:

<result>

{

for $a in distinct-values(//Author[@YearOfBirth < 1940]/@Name)
let $editions := //Author[@Name = $a]/../Edition

order by $a
return <Author>
{

attribute Name { $a },
attribute AmountOfEditions { count($editions) }

bs
</Author>

}

</result>

We bind the $editions variable to a sequence of all the editions of each author
independent on which book they appear in.

25

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,

Rafael Cordones Marcos relational and web databases

Result:

<?xml version="1.0" encoding="UTF-8"?>

<result>
<Author Name="'Andreas Shultz" AmountOfEditions="1"/>
<Author Name="Carl George"™ AmountOfEditions="1"/>
<Author Name="'Carl Sagan" AmountOfEditions="1"/>
<Author Name=""Christina Ohlsen"™ AmountOfEditions="1"/>
<Author Name="'Franc Desteille" AmountOfEditions="1"/>
<Author Name="'Kostas Andrianos" AmountOfEditions="1"/>
<Author Name="'Lilian Carrera" AmountOfEditions="1"/>
<Author Name="Marie Franksson'" AmountOfEditions="3"/>
<Author Name=""Peter Feldon"™ AmountOfEditions=""1"/>
<Author Name='"'Sam Davis" AmountOfEditions="4"/>

</result>

We can now count the number of different languages and the average edition price:

<result>
{
for $a in distinct-values(//Author[@YearOfBirth < 1940]/@Name)
let $editions := //Author[@Name = $a]/../Edition,
$languages := distinct-values($editions/Translation/@Language)
order by $a
return <Author>
{
attribute Name { %a },
attribute AmountOfEditions { count($editions) },
attribute AmountOfLanguages { count($languages) },
attribute AverageEditionPrice { avg($editions/@Price) }

}
</Author>

}

</result>

Note that we can reach the languages and the prices by using the $editions variable,
instead of starting from the Author again.

Result:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Author Name="Andreas Shultz' AmountOfEditions="1" AmountOfLanguages="12"
AverageEditionPrice="650"/>
<Author Name="Carl George" AmountOfEditions="1" AmountOfLanguages="12"
AverageEditionPrice="650"/>
<Author Name="Carl Sagan'™ AmountOfEditions="1" AmountOfLanguages="3"

<Author Name="Christina Ohlsen”™ AmountOfEditions="1" AmountOfLanguages='12"

<Author Name="'Franc Desteille”™ AmountOfEditions="1" AmountOfLanguages="'5"

<Author Name="Kostas Andrianos” AmountOfEditions="1" AmountOfLanguages="'12"
AverageEditionPrice="650"/>

<Author Name="Lilian Carrera" AmountOfEditions="1" AmountOfLanguages=""12"

AverageEditionPrice="650"/>
<Author Name="Marie Franksson" AmountOfEditions="3" AmountOfLanguages=""1"

26

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

AverageEditionPrice="56"/>
<Author Name=""Peter Feldon"™ AmountOfEditions="1" AmountOfLanguages=''12"
AverageEditionPrice="650"/>
<Author Name="'Sam Davis" AmountOfEditions="4" AmountOfLanguages="8"
AverageEditionPrice="358.75"/>
</result>

27

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

5.10 Query 10: Joining two structures

Which book has at least two authors from the same country?
We can start by trying to retrieve all the books with at least two authors for the same country:

<result>

{

for $b in //Book, $al in $b/Author, $a2 in $b/Author

where $al/@Name '= $a2/@Name and $al/@Country = $a2/@Country
order by $b/@Title

return <Book Title="{ $b/@Title }'"/>

}

</result>

We bind the variable $b to each book, and then bind $al and $a2 to each of the authors of the
current book. Then in the where clause we specify the conditions between the two authors.
Note that all the authors will go through both variables, thus we need to make sure that we
don't have the same author in both variables at the same time.

Result:

<?xml version="1.0" encoding="UTF-8"?>

<result>
<Book Title="Database Systems in Practice"/>
<Book Title=""Database Systems in Practice"/>
<Book Title="0Oceans on Earth"/>
<Book Title="0Oceans on Earth"/>
<Book Title="The Beach House"/>
<Book Title="The Beach House"/>

</result>

As we can see in the result the same book may come in the result several times (based on the
amount of pairs of authors that satisfied the condition). To remove these duplicates we can
wrap the result in a new query (similar to nesting an SQL SELECT statement in the FROM
clause of another):

<result>

{

for $t in
distinct-values(
for $b in //Book, $al in $b/Author, $a2 in $b/Author
where $al/@Name != $a2/@Name and $al/@Country = $a2/@Country
order by $b/@Title
return <Book Title="{ $b/@Title }'"/>
/0Title)

return <Book Title="{ $t }'"/>

}

</result>

28

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

Or another way of nesting:

<result>

{

for $t in //@Title

let $books :=
for $b in //Book, $al in $b/Author, $a2 in $b/Author
where $al/@Name != $a2/@Name and $al/@Country = $a2/@Country
return <Book> { $b/@Title } </Book>

where $books/@Title = $t

order by $t

return <Book> { $t } </Book>

+

</result>

In this case we assign the result of the nested query to the variable $books and get the
distinct book titles once again from the original source.

Another way to avoid the duplicates is to use the exist() function as illustrated here:

<result>

{
for $b in //Book

where exists(
for $al in $b/Author, $a2 in $b/Author
where $al/@Name != $a2/@Name
and $al/@Country = $a2/@Country
return 1)
order by $b/@Title
return <Book Title="{ $b/@Title }"/>

}

</result>

In this case the nested query checks if there exists at least one pair of authors that qualifies
and then returns a symbolic 1 so the function exists() will evaluate to true. In this way the
outer For clause goes through each book only once.

5.11 Query 11: Queries from more than one XML Source

Show the publishers of books published in German (translation language) together with their
country. Order the publishers by postal code.

To solve this query we will need to use two files, books .xml and publishers.xml. Up
to know we have used the GUI to specify the context (XML data for input) for the query but
to solve this query we are going to use the doc () function.

As usual, we proceed in steps. First we will find the books written in German. We can do this
in different ways, but we will show, two ways: one using a predicate in the XPath expression
and another using the where clause.

Using a predicate in the XPath expression:

29

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,

Rafael Cordones Marcos relational and web databases

<result>

{

for $book iIn //Book//Translation[@Language = "‘German™]/../..
return

<Book> { $book/@Title } </Book>

by

</result>

Gives as a result:

<?xml version="1.0" encoding="UTF-8"?>
<result>

<Book Title="Misty Nights'/>

<Book Title=""Contact"'/>

<Book Title="Music Now and Before"/>

<Book Title="Musical Instruments'/>

<Book Title="0Oceans on Earth"/>

<Book Title="Le chateau de mon pere'/>
</result>

Please note how we have navigated from a Translation node to a Book node by
terminating the XPath expression with “/._./..".

Using a where clause:

<result>

{

for $book in //Book

where $book//Translation/@Language = "‘German"
return <Book> { $book/@Title } </Book>

s

</result>

Which results in:

<?xml version="1.0" encoding="UTF-8"?>
<result>

<Book Title="Misty Nights'/>

<Book Title="Contact'/>

<Book Title="Music Now and Before'/>

<Book Title="Musical Instruments'/>

<Book Title="0Oceans on Earth"/>

<Book Title="Le chateau de mon pere'/>
</result>

Once we have the books with a translation in German we go to the second step, list publishers
with their postal addresses ordered by postal code.

Note that up to now we have always written XPath expressions starting with “/”, this is
because, as we said before, we have made use of the GUI (XQuisitor) to specify the context
of our query. For all the previous examples, the context has been the file books.xml but

30

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

now, we need to query another file: publishers.xml. Instead of using the GUI for
changing the context we will use the doc () function.

<result>

{
for $p in doc('publishers.xml')//Publisher

let $c := $p/Address/Country
return <Publisher> { $p/@Name, $c } </Publisher>

}

</result>

The doc () function allows us to select the input data from an XML file. Please observe that
you should make the Base URI in the GUI point to the directory in which the file
publishers.xml resides!

The previous query gives the following result:

<?xml version="1.0" encoding="UTF-8"?>

<result>
<Publisher Name="ABC International>
<Address>
<Country>Germany</Country>
</Address>

</Publisher>
<Publisher Name="Addison'>
<Address>
<Country>France</Country>
</Address>
</Publisher>

</result>
Now we only need to connect the two queries!

<result>
{
for $b in //Book,
$p in doc("'publishers.xml'™)//Publisher
let $c := $p/Address/Country

where $b//Translation/@Language = "German' and
$b//Translation/@Publisher = $p/@Name

order by $c

return

<Publisher> { $p/@Name, $c } </Publisher>

s

</result>

Which we could also write in a more compact way, making use of a variable:

<result>

{

31

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

for $b in //Book,
$p in doc("'publishers.xml'™)//Publisher
let $c := $p/Address/Country,
$t := $b//Translation
where $t/@Language = "German' and $t/@Publisher = $p/@Name
order by $c
return <Publisher> { $p/@Name, $c } </Publisher>

}

</result>

Which gives the result we wanted:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<Publisher Name="Kingsly'>
<Country>Austria</Country>
</Publisher>
<Publisher Name="Benton Inc'>
<Country>England</Country>
</Publisher>
<Publisher Name="Addison">
<Country>France</Country>
</Publisher>
<Publisher Name="ABC International'>
<Country>Germany</Country>
</Publisher>
<Publisher Name="ABC International'>
<Country>Germany</Country>
</Publisher>
<Publisher Name="ABC International'>
<Country>Germany</Country>
</Publisher>
<Publisher Name="Aurora Publ.'>
<Country>Iltaly</Country>
</Publisher>
<Publisher Name="RP''>
<Country>Russia</Country>
</Publisher>
<Publisher Name="SCB">
<Country>Sweden</Country>
</Publisher>
</result>

But, if you look at the result “ABC International” is repeated three times! Once again we can
use the exists() function to avoid the duplicates as we showed in a previous query:

<result>
{
for $p in doc(publishers.xml™)//Publisher
let $c := $p/Address/Country
where exists(
for $b in //Book
let $t := $b//Translation
where $t/@Language = "German'" and $t/@Publisher = $p/@Name
return 1

32

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases
)
order by $c
return <Publisher> { $p/@Name, $c } </Publisher>
+
</result>

5.12 Query12: Query Based on the Name of Nodes (Labels)

Show a list of all attribute names that contain the letter "i".

With this query, we want to show how to access the information about the types of nodes
(element, attribute, text, ...) and their names. First we write a query that will list all the
attribute names:

<result>

{
for $a in //0*

order by name($a)
return <attribute> { name($a) } </attribute>

}

</result>

Result:

<?xml version="1.0" encoding="UTF-8"?>
<result>
<attribute>Country</attribute>

<attribute>Country</attribute>
<attribute>Email</attribute>

<attribute>Email</attribute>
<attribute>Genre</attribute>

<attribute>Genre</attribute>
<attribute>Language</attribute>

<attribute>Language</attribute>
<attribute>Name</attribute>

<attribute>Name</attribute>
<attribute>0OriginalLanguage</attribute>

<attribute>0riginalLanguage</attribute>
<attribute>Price</attribute>

<attribute>Price</attribute>

</result>

As you can see, we use the function name() to get the name of the node and the XPath
expression "//@*" that evaluates to any attribute. We get many duplicates, which we can
remove the same way we have done in previous examples:

33

Department of Computer XML & XQuery v. 1.0

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases
<result>

{

for $at in distinct-values(
for $a in //@*
order by name($a)
return <attr> { name($a) } </attr>

)
return <attribute>{ $at } </attribute>

}

</result>

Result:

<?xml version="1.0" encoding="UTF-8"?7>

<result>
<attribute>Country</attribute>
<attribute>Email</attribute>
<attribute>Genre</attribute>
<attribute>Language</attribute>
<attribute>Name</attribute>
<attribute>0OriginalLanguage</attribute>
<attribute>Price</attribute>
<attribute>Publisher</attribute>
<attribute>Title</attribute>
<attribute>Year</attribute>
<attribute>YearOfBirth</attribute>

</result>

Now, we only need to add the constraint on the name of the attribute:

<result>

{
for $at in distinct-values(
for $a in //0*
order by name(%$a)
return <attr> { name(%a) } </attr>

where matches($at, "i'")
return <attribute>{ $at } </attribute>

}

</result>

Result:

<?xml version="1.0" encoding="UTF-8"?>

<result>
<attribute>Email</attribute>
<attribute>0OriginalLanguage</attribute>
<attribute>Price</attribute>
<attribute>Publisher</attribute>
<attribute>Title</attribute>
<attribute>YearOfBirth</attribute>

</result>

34

Stockholm
January 2006

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

6 Assignments

The following queries have to be solved in XQuery and have to be sent in electronically to the
conference “MLDB Assignments” in Firstclass not later than 25™ March 2006. For each
query you have to send in the following:

1. XQuery expression that returns the results in the requested DTD schema. Please note that
if a specific DTD schema is not provided for the result, then you can send your results in
the way you see is better.

2. Execution results

Do not forget to mention the group number and the names of all the group participants
when you send your assignments! Send one message with the exercises as one or more
attachments.

1. Show all the authors (ordered by name) born in Austria?
2. How many authors from the USA are there for each genre?

3. Find the books that have been published by each publisher? Show only publishers that
have at least one book.
We want the result XML document according to the following DTD:

<IELEMENT result (Publisher*)>

<IELEMENT Publisher (Book*)>

<IATTLIST Publisher Name CDATA #REQUIRED>
<IELEMENT Book EMPTY>

<IATTLIST Book Title CDATA #REQUIRED>

4. Which book (or books) has the highest edition price?
We want the result XML document according to the following DTD:

<IELEMENT result (Book+)>
<IELEMENT Book EMPTY>
<IATTLIST Book Title CDATA #REQUIRED>

5. Find a book with two at least two editions where the price of the one edition is twice
as much as the price of the other edition?
We want the result XML document according to the following DTD:

<IELEMENT result (Book+)>
<IELEMENT Book EMPTY>
<IATTLIST Book Title CDATA #REQUIRED>

6. Which books have been written by at least one author who comes from the same
country as the author Marie Franksson?
We want the result XML document according to the following DTD:

35

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

<IELEMENT result (Book*)>

<IELEMENT Book (Author+)>

<IATTLIST Book Title CDATA #REQUIRED>

<IELEMENT Author EMPTY>

<IATTLIST Author Name CDATA #REQUIRED
Country CDATA #REQUIRED>

7 Epilogue

We hope you enjoyed working through the examples! Please, do not hesitate to send
comments or questions to the author so we can improve this document!

/Rafa
rafa@dsv.su.se

8 References

[1] XQuery: An XML query language. D. Chamberlin.
IBM Systems Journal, Vol 41, No 4, 2002.
URL.: http://www.research.ibm.com/journal/sj/414/chamberlin.html
[2] XQuery 1.0: An XML Query Language. W3C.
URL.: http://www.w3.org/TR/xquery/
[3] XQuery 1.0 and XPath 2.0 Functions and Operators. W3C.
URL.: http://www.w3.0org/TR/xpath-functions/
[4] XQuisitor. Elliotte Rusty Harold.
URL.: http://www.ibiblio.org/xml/xquisitor/
[5] Free Software. Wikipedia.
URL.: http://en.wikipedia.org/wiki/Free_Software
[6] Serialization. Wikipedia.
URL.: http://en.wikipedia.org/wiki/Serialization
[7] Uniform Resource Identifier (URI). Wikipedia.
URI: http://en.wikipedia.org/wiki/Uniform_Resource_lIdentifier
[8] jEdit.
URL.: http://www.jedit.org/
[9] aXe: Advanced XML Editor.
URL.: http://www.adrem.ua.ac.be/~wellenslepage/regspec/

9 Appendix I: jEdit’s Advanced Text Editor (aXe)

JEdit[8] is an editor written for programmers and which is developed completely in Java.
Among the many plug-ins that jEdit offers, it has two that provide a very good environment
for evaluating XQuery queries. To the left of the screenshot, the Sidekick plug-in is shown. It
provides a structured view of XML documents. On the right side, the XQuery plug-in
provides similar functionalities to those provided by XQuisitor.

36

Department of Computer XML & XQuery v. 1.0 Stockholm

And Systems Sciences 1S4/2i1242/2i4042 Spring 2006 January 2006
SU/KTH Models and languages for object,
Rafael Cordones Marcos relational and web databases

BB iEdit - Untitled-1 (modified)

File Edit Search Markers Folding Wiew Utiliies Macros Plugins Help
Y = 5 ol 2] ® | :Base URI
x| B m®s/ 42 0008 AX JEE 8] = g
Y 5 urtitied-1 Untitled-1 {C\Program Files\Edit 4.3pre 3y |v Salect ¥ML Contest
§ Mot parsed [Teragules. o]) No Context =
s . : &
% for §a in //Author[@YearOfBirth > 1940].
3 let geditions := //huthor[@Name = §a/@Name]/../Edition,. @ Use File
5 $lanquages := distinct-walues(//buthor[(Name = $a/@Name]/.. /Edition/Translati §§Contex1 Source: -
< | sprices := /j/huthor[@Nane = ¢$a/@Name]l/../Edition/@Price. isdbguerdbooksibooks xml
order by §a/@Name .
return <Author Name="{ data(ga/@Name)] 17> . i
I g@SeIect}(Quewlnput
attribute Amount0fEditions { count(feditions) },. @ Use Buffer
attribute Amount0flLancuages { count(flanquages) 1,.) Use Fil
attribute AveragegEditionPrice { awg(sprices) } . 5; SIS
1. S HQuery Source:
</duthorx .
N) Use Pane
< /results. H
| o xuzry =
N i
[3,14 80 {textnone,Cp1252) - - - - Wil L

To install this plug-ins you need to install jEdit first and then go to jEdit’s Plugins » Plugins
manager » install (tab). Then select the following plug-ins for installation: SideKick, XML,
XML Indenter, XSLT and XQuery plugin.

Please, note that the use of jEdit is not supported by the tutors of the course. This means that
the tutors cannot help you with installation and configuration problems.

37

